Schnellerer Weg zu synthetischen Daten gesucht

Surrogate models of neural networks in high energy physics: The use of neural networks could considerably accelerate the production of synthetic data sets in high energy physics with all physical boundary conditions.
© CASUS/2021 CMS Collaboration

Helmholtz-Gemeinschaft fördert Projekt zur Datengewinnung mittels neuronaler Netzwerke.

Neben experimentellen Daten wird in der physikalischen Grundlagenforschung auch mit synthetisch erzeugten Daten gearbeitet. Deren Gewinnung mit aktuell verfügbaren Simulationsmethoden ist jedoch zeitintensiv und bindet immense Rechnerkapazitäten. Ein neues Projekt von DESY, Helmholtz-Zentrum Dresden-Rossendorf und dem Zentrum für datenintensive Systemforschung CASUS am HZDR erprobt einen Ansatz, mit dem Daten zum Verhalten von physikalischen Systemen mittels neuronaler Netze schneller erzeugt werden können. Das Projekt „SynRap“ wurde in einem Wettbewerbsverfahren zur Förderung ausgewählt.

Die 15 Gewinnerteams erhalten über Helmholtz AI, der Kooperationseinheit der Helmholtz-Gemeinschaft zum Thema Künstliche Intelligenz, in den kommenden Jahren insgesamt 6,2 Millionen Euro.

Synthetische Daten sind am Computer algorithmisch erzeugte Daten. Sie werden zum Beispiel für das Testen von Software oder die Weitergabe von anonymisierten personenbezogenen Daten genutzt. Das Trainieren von Algorithmen des maschinellen Lernens ist ein weiteres wichtiges Einsatzgebiet. Hier werden synthetische Daten insbesondere zum Trainieren jener Algorithmen benötigt, die zu den tiefen neuronalen Netzen („deep neural networks“) zählen. „Diese Algorithmen müssen mit besonders großen Datensätzen angelernt werden, damit bei der Analyse der experimentellen Daten akkurate Ergebnisse erzielt werden“, erklärt Dr. Isabell Melzer-Pellmann, Gruppenleiterin bei DESY. Aktuell werden diese Trainingsdaten mit komplexen numerischen Simulationsmethoden aus zum Beispiel der Quantenmechanik erzeugt. Dieses Vorgehen ist allerdings rechenintensiv und nimmt viel Zeit in Anspruch.

Eine schnellere Alternative wird nun im Rahmen des Projekts „SynRap – Auf maschinellem Lernen basierende Generierung synthetischer Daten für die schnelle Modellbildung in der Physik“ erforscht. Das Ziel von Melzer-Pellmann und ihren Mitstreitern Dr. Dirk Krücker vom DESY, Dr. Attila Cangi vom CASUS (Center for Advanced Systems Understanding, Görlitz) und Dr. Nico Hoffmann vom HZDR-Institut für Strahlenphysik ist es, den Prozess der Erzeugung großer Mengen synthetischer Daten um den Faktor 1.000 zu beschleunigen. Dafür will das Team eine Toolbox von für diesen Zweck geeigneten Algorithmen des maschinellen Lernens zusammenstellen. Diese Algorithmen werden aus einer bestimmten Untergruppe der neuronalen Netzwerke stammen. In Abgrenzung zu den tiefen neuronalen Netzwerken wird diese als stellvertretende neuronale Netzwerke beziehungsweise Ersatzmodelle neuronaler Netzwerke („surrogate neural networks“) bezeichnet.

Ob die Qualität der derart erzeugten Datensätze stimmt, soll anhand je einem Beispiel aus der Hochenergiedichtephysik und der Hochenergiephysik überprüft werden. Im Bereich der Hochenergiedichtematerie geht es um die Zusammensetzung des Inneren von Planeten und Sternen, aber auch um Fragen angewandter Forschung wie der Bearbeitung von Materialien mit starken Lasern. Die Hochenergiephysik erforscht indes grundlegende Fragen zur Natur unseres Universums: Woraus besteht Materie? Welche Gesetze bestimmen Wechselwirkungen der Bestandteile der Materie?

Ein Werkzeugkasten – viele Einsatzgebiete

„Die Besonderheit unseres Projektes ist es, dass unser Werkzeugkasten von verschiedenen neuronalen Netzwerken letztendlich in vielen Forschungsgebieten Verwendung finden soll“, erläutert Cangi. Daher wird bei der Entwicklung der Software-Tools der Bedarf anderer Naturwissenschaften berücksichtigt. „Die interdisziplinäre Natur von CASUS ermöglicht es uns, unsere Arbeit immer auch an typischen Nutzungsszenarien aus den Umweltwissenschaften oder der Systembiologie zu orientieren“, fährt Cangi fort.

Die Helmholtz-Kooperationseinheit zur Künstlichen Intelligenz (Helmholtz AI) stärkt die Anwendung und Entwicklung von angewandter künstlicher Intelligenz (engl. artificial intelligence, AI) und maschinellem Lernen. Das Expertenpanel wählte insbesondere jene Forschungsprojekte des Wettbewerbs aus, bei denen ein hoher Erkenntnisgewinn in Aussicht steht. Allerdings gelten solche Projekte auch als besonders riskant. Es muss also damit gerechnet werden, auf unlösbare Probleme zu stoßen und das erklärte Projektziel nicht zu erreichen. Im Rahmen der aktuellen Ausschreibungsrunde vergibt die Helmholtz-Gemeinschaft insgesamt 6,2 Millionen Euro. Bei der ersten Ausschreibung der Helmholtz-AI-Projekte vor einem Jahr wurden 19 Vorhaben mit insgesamt 7,2 Millionen Euro bedacht.

Wissenschaftliche Ansprechpartner:

Dr. Michael Bussmann | Gründungsbeauftragter
Center for Advanced Systems Understanding (CASUS) am HZDR
+49 3581 375 2311, +49 351 260 2616 | m.bussmann@hzdr.de

Dr. Attila Cangi
Center for Advanced Systems Understanding (CASUS) am HZDR
+49 3581 375 23 52 | a.cangi@hzdr.de

Dr. Nico Hoffmann
Institut für Strahlenphysik,HZDR
+49 351 260 3668 | n.hoffmann@hzdr.de

Dr. Dirk Krücker
DESY
+49 40 8998 3749 | dirk.kruecker@desy.de

Dr. Isabell Melzer-Pellmann
Leiterin der DESY-CMS (Compact Muon Solenoid)-Gruppe, DESY
+49 40 8998 2489 | isabell.melzer@desy.de

Prof. Dr. Ulrich Schramm | Direktor
Institut für Strahlenphysik, HZDR
+49 351 260 2471 | u.schramm@hzdr.de

Weitere Informationen:

http://www.casus.science/de-de/ Webseite CASUS
http://www.helmholtz.ai/ Helmholtz-AI-Webseite

http://www.desy.de/

Media Contact

Dr. Thomas Zoufal Presse- und Öffentlichkeitsarbeit
Deutsches Elektronen-Synchrotron DESY

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ist der Abrieb von Offshore-Windfarmen schädlich für Miesmuscheln?

Rotorblätter von Offshore-Windparkanlagen unterliegen nach mehrjährigem Betrieb unter rauen Wetterbedingungen einer Degradation und Oberflächenerosion, was zu erheblichen Partikelemissionen in die Umwelt führt. Ein Forschungsteam unter Leitung des Alfred-Wegener-Instituts hat jetzt…

Per Tierwohl-Tracker auf der Spur von Krankheiten und Katastrophen

DBU-Förderung für Münchner Startup Talos… Aus dem Verhalten der Tiere können Menschen vieles lernen – um diese Daten optimal auslesen zu können, hat das Münchner Startup Talos GmbH wenige Zentimeter…

Mit Wearables die Gesundheit immer im Blick

Wearables wie Smartwatches oder Sensorringe sind bereits fester Bestandteil unseres Alltags und beliebte Geschenke zu Weihnachten. Sie tracken unseren Puls, unsere Schrittzahl oder auch unseren Schlafrhythmus. Auf welche Weise können…