Schnelles & langsames Denken: Neues DFKI-Projekt soll Deep-Learning-Verfahren verlässlicher machen

Ein Pi4-Workerbot hält Jonglierbälle in die Luft. DFKI GmbH, Foto: Lisa Jungmann

Wissenschaftler des Deutschen Forschungszentrums für Künstliche Intelligenz (DFKI) untersuchen nun, wie sich diese Ergebnisse überprüfen lassen und so verlässlicher werden – ohne an Schnelligkeit einzubüßen.

Die neue Methode soll unter anderem anhand eines jonglierenden Industrieroboters getestet werden. Gefördert wird das Projekt „Fast&Slow“ vom Bundesministerium für Bildung und Forschung (BMBF) mit rund 1,2 Millionen Euro.

Wie lässt sich das Jonglieren besser erlernen: Durch Beobachten und Ausprobieren, oder durch das langwierige Planen der einzelnen Handbewegungen und Würfe?

Dem Psychologen Daniel Kahneman zufolge verstecken sich hierin die zwei Systeme, die das menschliche Denken bestimmen – das schnelle, emotionale und unbewusste Entscheiden, oder das langsame, logische und berechnende.

Obwohl Computer nach wie vor weit davon entfernt sind, das menschliche Denkvermögen in seiner Komplexität nachzuahmen, gibt es zwei vergleichbare Herangehensweisen, mithilfe derer eine Künstliche Intelligenz Entscheidungen treffen kann. Während Deep-Learning-Verfahren zu schnellen, jedoch rational nicht begründbaren Ergebnissen führen, können durch formale Berechnungen nachvollziehbare und mathematisch korrekte Antworten erhalten werden – die allerdings mehr Zeit beanspruchen.

In dem am 1. November 2019 gestarteten Projekt „Fast&Slow“ untersuchen Wissenschaftler des DFKI, wie sich die beiden Methoden kombinieren lassen. Am Forschungsbereich Cyber-Physical Systems, geleitet von Prof. Dr. Rolf Drechsler, soll es einer Künstlichen Intelligenz ermöglicht werden, gleichzeitig schnelle wie auch verlässliche Entscheidungen zu treffen.

Denn Deep-Learning-Verfahren alleine liefern lediglich subsymbolisch errechnete Lösungen, die auf Millionen von Parametern und Unmengen von Testbeispielen basieren. In vielen Anwendungsgebieten erfüllt dieses Vorgehen jedoch nicht die Ansprüche an Verlässlichkeit und Vertrauenswürdigkeit – beispielsweise im Bereich des autonomen Fahrens. Aus diesem Grund ist es notwendig, die Ergebnisse überprüfen und der KI die korrekten Ergebnisse antrainieren zu können.

Verfahren soll Robotern beim sicheren Jonglieren und Navigieren helfen

Hierzu sollen diese subsymbolischen Verfahren mit symbolischen kombiniert werden, um so die Vorteile beider – die Schnelligkeit ebenso wie die nachvollziehbare Korrektheit der Resultate – nutzen zu können. Dafür ist es zunächst nötig, Problemstellungen zu definieren, die sowohl formal als auch durch Deep-Learning-Algorithmen lösbar sind – wie beispielsweise das Planen von Handlungsabläufen.

Zunächst soll das formal korrekte Ergebnis trainiert werden, bevor das Problem durch das schnellere, subymbolische Verfahren zu lösen versucht wird. Das Resultat kann im Nachhinein mit der symbolischen Methode überprüft und gegebenenfalls korrigiert werden.

Um die Kombination der Verfahren zu testen, planen die Wissenschaftler des DFKI zwei Versuchsabläufe: Im ersten Versuch sollen sogenannte TurtleBots (kleine autonome Transportroboter, die unter anderem als Transporthilfen genutzt werden können) ihren sicheren Weg durch ein Smart Home finden.

Im zweiten Versuch soll wiederum einem Pi4-Workerbot – ein Industrieroboter mit zwei Armen – das Jonglieren beigebracht werden. Ziel ist es, den Roboter sowohl alleine als auch zusammen mit einem Menschen jonglieren zu lassen, indem er die berechneten Bewegungsabläufe kennt und gleichzeitig durch Deep-Learning-Verfahren schnell über die nächste Armbewegung entscheiden kann.

Grundlagen für eine vorurteilsfreie und verlässliche KI

Zunächst geht es in dem Projekt „Fast&Slow“ jedoch darum, die grundlegenden Probleme der zwei Verfahren zu betrachten: Wie lassen sich die Informationen der verschiedenen KI-Methoden zusammenführen, welche Probleme lassen sich formell überprüfen und in welchen Fällen ist diese Überprüfung besonders wichtig?

Ein bekanntes Beispiel für die Schwächen des Deep Learning sind Verfahren, die aufgrund der Daten, mit denen sie trainiert wurden, Vorurteile ausbilden. Gerade in solchen Situationen ist es von Bedeutung, auch formale Ergebnisse zu erhalten.

Die Wissenschaftler des DFKI zielen darauf ab, die Grundlagen für einen sichereren und verlässlicheren Einsatz von Deep-Learning-Verfahren zu entwickeln, um so das Potential der maschinellen Entscheidungsfindung auch in anspruchsvollen Bereichen nutzen zu können. Das Bundesministerium für Bildung und Forschung (BMBF) fördert das Projekt „Fast&Slow“ deshalb mit rund 1,2 Millionen Euro über eine Laufzeit von drei Jahren.

Bildmaterial:
Unter https://cloud.dfki.de/owncloud/index.php/s/KkNkgzrRic2AdNH steht ein Foto zum Download bereit. Dieses können Sie mit Nennung der Quelle „DFKI GmbH, Foto: Lisa Jungmann“ gerne verwenden.

Ansprechpartner:
Prof. Dr. Dieter Hutter
Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI)
Cyber-Physical Systems
Telefon: 0421 218 59831
E-Mail: Dieter.Hutter@dfki.de

Pressekontakt:
Deutsches Forschungszentrum für Künstliche Intelligenz
Team Unternehmenskommunikation Bremen
Tel.: 0421 178 45 4180
E-Mail: uk-hb@dfki.de

Media Contact

Jens Peter Kückens DFKI Bremen idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Muster mikrobieller Evolution im See Mendota, analysiert mit Metagenom-Daten und saisonalen Einblicken.

Ein endloser Kreislauf: Wie sich einige Bakterien mit den Jahreszeiten entwickeln

Die längste jemals gesammelte natürliche Metagenom-Zeitreihe mit Mikroben offenbart ein verblüffendes evolutionäres Muster, das sich wiederholt. Ein mikrobielles „Murmeltiertagsjahr“ im Lake Mendota Ähnlich wie Bill Murray im Film „Und täglich…

Mueller-Matrix-Polarimetrie-Technik zur Bewertung der Achillessehnenheilung.

Entdecken Sie bahnbrechende Forschung zur Regeneration der Achillessehne

Achillessehnenverletzungen sind häufig, aber aufgrund der Einschränkungen aktueller Bildgebungstechniken schwer während der Genesung zu überwachen. Forschende unter der Leitung von Associate Professor Zeng Nan von der International Graduate School in…

Echtzeit-Genetische Sequenzierung zur Überwachung neuer Pathogene und Infektionsvarianten

Warum Prävention besser ist als Heilung – Ein neuartiger Ansatz für den Umgang mit Infektionskrankheiten

Forscher haben eine neue Methode entwickelt, um ansteckendere Varianten von Viren oder Bakterien zu identifizieren, die sich unter Menschen auszubreiten beginnen – darunter Erreger von Grippe, COVID, Keuchhusten und Tuberkulose….