Topologische Materialien für die ultraschnelle Spintronik

Snapshots of the electronic structure of Sb acquired with femtosecond time-resolution. Note the changing spectral weight above the Fermi energy (EF).
Credit: HZB/Nature Communication Physics (2021)

Ein Team um den HZB-Physiker Dr. Jaime Sánchez-Barriga hat neue Einblicke in die ultraschnelle Anregung und Reaktion von Toplogischen Zuständen der Materie auf Femtosekunden-Laseranregung gewonnen. Mit zeit- und spinaufgelösten Methoden untersuchten die Physiker an BESSY II, wie das komplexe Wechselspiel im Verhalten angeregter Elektronen im Volumen und an der Oberfläche nach optischer Anregung zu einer ungewöhnlichen Spindynamik führt. Die Arbeit ist ein wichtiger Schritt auf dem Weg zu spintronischen Bauelementen auf Basis topologischer Materialien für die ultraschnelle Informationsverarbeitung.

Die Gesetze der Quantenphysik beherrschen den Mikrokosmos. Sie bestimmen zum Beispiel, wie leicht sich Elektronen durch ein Kristallgitter bewegen und ob das Material metallische Eigenschaften hat, ein Halbleiter oder ein Isolator ist. Die Quantenphysik führt in bestimmten Materialien auch zu exotischen Eigenschaften:

In sogenannten topologischen Isolatoren bewegen sich Elektronen in bestimmten Quantenzustände wie masselose Teilchen an der Oberfläche völlig frei, während Elektronen im Materialvolumen nicht beweglich sind. Darüber hinaus sind die Leitungselektronen in der „Haut“ des Materials grundsätzlich spinpolarisiert und bilden robuste, metallische Oberflächenzustände, die als Kanäle genutzt werden könnten, um Spinströme auf Femtosekunden-Zeitskalen (1 fs= 10-15 s) zu erzeugen.

Informationen mit Hilfe von Spins übertragen

Diese Eigenschaften von topologischen Materialien eröffnen neue Möglichkeiten für neue Informationstechnologien wie die ultraschnelle Spintronik, für die der Spin der Elektronen auf ihren Oberflächen und nicht die Ladung ausgenutzt wird. Insbesondere die optische Anregung durch Femtosekunden-Laserpulse in diesen Materialien wäre eine interessante Option, um Spin-Informationen verlustfreie und etwa tausendmal schneller (im Vergleich zu modernen elektronischen Bauelementen) zu übertragen.

Allerdings sind noch viele Fragen zu klären, bevor spintronische Bauelemente entwickelt werden können. Zum Beispiel, wie genau die Volumen (Bulk)- und Oberflächenelektronen eines topologischen Materials auf Laserpulse reagieren und wie stark sich ihr kollektives Verhalten auf ultrakurzen Zeitskalen überschneidet.

Komplexe Physik in einem einfachen System

Ein Team um den HZB-Physiker Dr. Jaime Sánchez-Barriga hat nun neue Erkenntnisse über solche Mechanismen veröffentlicht. Das Team, das auch eine Helmholtz-RSF Joint Research Group in Zusammenarbeit mit Kollegen der Lomonosov State University, Moskau, aufgebaut hat, untersuchte Einkristalle aus elementarem Antimon (Sb), von dem man annahm, dass es ein topologisches Material ist. „Es ist eine gute Strategie, interessante Physik in einem einfachen System zu untersuchen, denn dort können wir hoffen, die grundlegenden Prinzipien zu verstehen“, erklärt Sánchez-Barriga. „Um die topologischen Eigenschaften dieses Materials experimentell nachzuweisen, mussten wir die elektronische Struktur in einem hoch angeregten Zustand mit Zeit-, Spin-, Energie- und Impulsauflösung analysieren. Auf diese Weise erhielten wir Zugang zu einer ungewöhnlichen Elektronendynamik“, ergänzt der Physiker.

Aus dem Gleichgewicht

Ziel war es, zu verstehen, wie schnell angeregte Elektronen im Volumen und an der Oberfläche von Antimon auf den Energieeintrag von außen reagieren, und die Mechanismen zu erforschen, die ihre Reaktion steuern. „Wir konnten ein vollständiges zeitaufgelöstes Bild davon erstellen, wie angeregte Zustände auf ultraschnellen Zeitskalen das Gleichgewicht verlassen und wieder zurückkehren. Die einzigartige Kombination von zeit- und spin-aufgelösten Messungen erlaubte es uns auch, die Spin-Polarisation von angeregten Zuständen weit außerhalb des Gleichgewichts direkt zu untersuchen“, sagt Dr. Oliver J. Clark.

Mehr Masse

Die Daten zeigen einen „Knick“ in den Energie-Impuls-Kurven der Oberflächenzustände, der als Zunahme der effektiven Elektronenmasse interpretiert werden kann. Diese Massenerhöhung bestimmt das komplexe Wechselspiel im dynamischen Verhalten von Elektronen aus dem Volumen und der Oberfläche nach der ultraschnellen optischen Anregung entscheidend mit, auch in Abhängigkeit von ihrem Spin.

Kontrolle von spinpolarisierten Strömen

„Unsere Forschung zeigt, welche Eigenschaften dieser Materialklasse der Schlüssel sind, um die relevanten Zeitskalen, in denen verlustfreie spinpolarisierte Ströme erzeugt und manipuliert werden können, systematisch zu kontrollieren“, erklärt Sánchez-Barriga. Dies sind wichtige Schritte auf dem Weg zu spintronischen Bauelementen, auf Basis topologischer Materialien für die ultraschnelle Informationsverarbeitung.

Wissenschaftliche Ansprechpartner:

Dr. Jaime Sanchez-Barriga,
HZB
Email: jaime.sanchez-barriga@helmholtz-berlin.de

Originalpublikation:

Nature Communication Physics (2021):
Observation of a giant mass enhancement in the ultrafast electron dynamics of a topological semimetal
Oliver J. Clark, Friedrich Freyse, Irene Aguilera, Alexander S. Frolov, Andrey M. Ionov, Sergey I. Bozhko, Lada V. Yashina, and Jaime Sánchez-Barriga
DOI: 10.1038/s42005-021-00657-6

https://www.helmholtz-berlin.de/pubbin/news_seite?nid=23062;sprache=de;seitenid=1

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen

An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…

Tsunami-Frühwarnsystem im Indischen Ozean

20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….

Resistente Bakterien in der Ostsee

Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…