Vom Skyrmion zum Hopfion

Schematische Darstellung der Magnetisierung des Hopfionenrings um einen Skyrmionfaden
(c) Forschungszentrum Jülich / Nikolai Kiselev

Nachweis von 3D-Magnetringen eröffnet eine neue Dimension für Computertechnologien (Nature).

Exotische magnetische Strukturen wie Skyrmionen sind auch als topologische Teilchen bekannt. Da sie sich leicht innerhalb eines Kristalls bewegen lassen, gelten sie als vielversprechende Informationsträger der Zukunft. Wissenschaftler aus Jülich, China und Schweden haben nun erstmals ein verwandtes stabiles nanoskaliges, magnetisches 3D-Objekt in einem Festkörper erzeugt und beobachtet. Die von ihnen entdeckten Hopfionen eröffnen mit ihrer komplexen Struktur und Dreidimensionalität einen neuen Forschungszweig und könnten sich als wegweisend erweisen für neuartige Datenspeicher und neuromorphe Computer der Zukunft. Die Ergebnisse wurden im Fachmagazin Nature veröffentlicht.

Winzige magnetische Wirbel, die auch als Skyrmionen bezeichnet werden, sorgen seit rund zwanzig Jahren in der Fachwelt für Aufsehen. Im Gegensatz zu anderen typischen Anregungen, die in magnetischen Systemen auftreten, sind Skyrmionen und Hopfionen aufgrund ihrer sogenannten topologischen Eigenschaften sehr stabil. Sie verhalten sich ähnlich wie gewöhnliche Teilchen, sind räumlich lokalisierbar und können unter dem Einfluss äußerer Kräfte bewegen und miteinander interagieren.

Skyrmionen sind zweidimensional. Im Innern eines Kristalls stapeln sie sich zu einer Art Faden übereinander, der sich von einem Ende des Kristalls bis zum anderen zieht. Die nun nachgewiesenen Hopfionen sind dagegen kompakte, dreidimensionale Gebilde, bei denen sich Skyrmionenfäden zu winzigen Schleifen oder Knoten zusammenschließen. Obwohl ihre Existenz bereits vor Jahrzehnten vorhergesagt wurde, konnten sie bis jetzt nur theoretisch behandelt werden.

Schematische Darstellung der Magnetisierung des Hopfionenrings um einen Skyrmionfaden (links). / Elektronenmikroskopische Aufnahme eines Hopfionenrings um einen einzelnen Skyrmionenfaden in einem Eisen-Germanium-Plättchen (rechts)
Schematische Darstellung der Magnetisierung des Hopfionenrings um einen Skyrmionfaden (links). / Elektronenmikroskopische Aufnahme eines Hopfionenrings um einen einzelnen Skyrmionenfaden in einem Eisen-Germanium-Plättchen (rechts). (c) Forschungszentrum Jülich / Nikolai Kiselev

Die am Forschungszentrum Jülich durchgeführten Experimente haben nun erstmals gezeigt, dass Hopfionen tatsächlich in einem magnetischen Material vorkommen und de facto an Skyrmionenfäden gekoppelt sind. Die Hopfionenringe umschließen die Skyrmionenfäden wie ein Ring an einem Finger. Im Ergebnis entsteht so ein äußerst flexibles Gebilde. Entlang der Fäden können sich die Hopfionenringe leicht auf und ab – oder gemeinsam mit diesen in jede räumliche Richtung bewegen, was sie zu vielversprechenden Kandidaten für unterschiedlichste zukünftige Computertechnologien macht.

„Komplexeste jemals entdeckte Magnetstruktur“

„Dieses Projekt war von Anfang an eine Herausforderung. Wir mussten die richtige Größe und Form für die Proben finden, und dann Hunderte von Stunden am Mikroskop verbringen, um verschiedene Ansätze zur Anregung des Systems untersuchen, um die Hopfionenringe tatsächlich zu erzeugen“, erklärt Fengshan Zheng, der Erstautor der Veröffentlichung in Nature. Der Juniorprofessor an der South China University of Technology in Guangzhou hat den Großteil der Forschungsarbeit am Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) am Forschungszentrum Jülich durchgeführt.

„Die von uns gefundenen Hopfionenringe sind möglicherweise die komplexeste Struktur, die jemals experimentell in dreidimensionalen magnetischen Kristallen beobachtet wurde. Sowohl das physikalische Phänomen selbst als auch die mathematische Eleganz der dahinterstehenden Theorie sind äußerst faszinierend“, betont Dr. Nikolai Kiselev vom Jülicher Peter Grünberg Institut (PGI-1).

„Es handelt sich hier nicht um einen zufälligen Fund. Wir können Hopfionen nach dem von uns entwickelten Protokoll jederzeit erzeugen. Ich bin überzeugt, dass diese Arbeit neue Möglichkeiten für die Entwicklung zukünftiger Datenspeicher und neuromorpher Computer eröffnet“, fügt Prof. Stefan Blügel, Direktor des PGI-1, hinzu.

„Die Entdeckung von Hopfionenringen in magnetischen Materialien ist ein wesentliches Ergebnis des Projekts 3D-MAGiC, für das Stefan Blügel und ich zusammen mit zwei Kollegen im Jahr 2019 einen ERC Synergy Grant vom European Research Council erhalten haben“, betont Prof. Rafal Dunin-Borkowski, Direktor am Ernst Ruska-Centre für Mikroskopie und Spektroskopie mit Elektronen (ER-C) in Jülich.

Nur wenige zehn Nanometer große Struktur

Die Existenz von Hopfionen-Ringen ergibt sich aus den Gesetzen der Quantenmechanik und des Elektromagnetismus. Entsprechende Computersimulationen bestätigten das beobachtete Phänomen und lieferten den Wissenschaftlern zudem eine Erklärung dafür, warum sie die Hopfionen-Ringe in dem Probematerial nur in Verbindung mit Skyrmionen-Strängen beobachten konnten. Diese stabilisieren die Hopfionen offenbar und schützen sie vor dem Zusammenbruch. Koautor Dr. Filipp Rybakov von der Universität Uppsala in Schweden konnte in einer theoretischen Analyse zudem eine Verbindung der beobachteten Phänomene mit der sehr fundamentalen mathematischen Theorie der sogenannten Homotopiegruppen aufzeigen.

Die Hopfionen, die die Forscher in den Experimenten am Forschungszentrum Jülich entdeckten, haben einen Durchmesser von weniger als zehn Nanometern. Sie wurden in einem Plättchen nachgewiesen, das eine Kantenlänge von einem Mikrometer aufweist. Das Plättchen wurde aus einem größeren, qualitativ hochwertigen Eisen-Germanium-Einkristall geschnitten, der von Haifeng Du am High Magnetic Field Laboratory in China hergestellt wurde. Solche Kristalle gehören zur Klasse der sogenannten chiralen Magnete. Die magnetischen Momente sind darin nicht wie üblich gleichmäßig, sondern entlang einer Achse spiralförmig angeordnet. Die Wissenschaftler gehen aufgrund von Modellrechnungen davon aus, dass die beobachteten magnetischen 3D-Strukturen nicht nur in Eisen-Germanium, sondern in allen chiralen Magneten auftreten.

Originalpublikation:

Hopfion rings in a cubic chiral magnet
Fengshan Zheng, Nikolai S. Kiselev, Filipp N. Rybakov, Luyan Yang, Wen Shi, Stefan Blügel & Rafal E. Dunin-Borkowski
Nature (2023), DOI: https://doi.org/10.1038/s41586-023-06658-5

Nature News & Views
Magnetic hopfion rings in new era for topology
https://www.nature.com/articles/d41586-023-03502-8

Weitere Informationen:

https://www.fz-juelich.de/de/aktuelles/news/pressemitteilungen/2023/vom-skyrmion… Pressemitteilung des Forschungszentrums Jülich

Media Contact

Dipl.-Biologin Annette Stettien Unternehmenskommunikation
Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Die Roboterhand lernt zu fühlen

Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…

Regenschutz für Rotorblätter

Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…

Materialforschung: Überraschung an der Korngrenze

Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…