Wandelbarer Joystick für Animationskünstler

Im Chemieunterricht setzen Schüler Kügelchen und Stäbchen zu komplexen Molekülen zusammen, um chemische Verbindungen zu veranschaulichen. Etwas Ähnliches hat im Interactive Geometry Lab der ETH Zürich Gestalt angenommen.

Aber ETH-Professorin Olga Sorkine-Hornung und ihr Team erforschen keine Moleküle, sondern Methoden, um virtuelle Figuren am Computer möglichst naturgetreu zu animieren. Dazu haben sie nun einen neuartigen «Joystick» entwickelt:

Dieser besteht aus Bausteinen, die der Nutzer wie die Kugeln und Stäbchen des Chemiebaukastens zu einer der animierten Figur ähnlichen Form zusammensetzen kann, sei es ein Mensch, ein Hund, ein Elefant oder auch nur einzelne Körperteile.

Baukastenprinzip

Mit Unterstützung des Autonomous Systems Labors unter Leitung von ETH-Professor Roland Siegwart entwickelte Sorkine-Hornungs Team ein Steuergerät mit integrierten Sensoren, das aus Einzelteilen in jeder beliebigen Form zusammengesetzt werden kann. Nutzer können die 3D-gedruckten und mit Sensoren versehenen Bausteine beliebig zusammenbauen.

Die Sensoren in jedem Gelenk dieser «Joystick»-Puppe messen den Winkel der Beuge- oder der Drehbewegung und übertragen diese Information an eine Software, welche die entsprechende Bewegung der virtuellen Figur errechnet und ausführt.

«Die Software unterstützt den Künstler beim Verknüpfen der Gelenke des selbst-zusammengesetzten Geräts mit den virtuellen Gelenken der Animation», erklärt Sorkine-Hornung. So überbrückt das System auch problemlos Proportionsunterschiede: Die Abstände zwischen den einzelnen Gelenken müssen im realen und im virtuellen Raum nicht identisch sein. Eine kurzhalsige «Joystick»-Puppe kann so auch eine langhalsige Animationsgiraffe steuern.

Baupläne für weitere Forschung

Die Forschenden haben die Pläne für die Bausteine ihres Geräts als «Open Hardware» öffentlich zugänglich gemacht und hoffen, dadurch weitere Forschung anzustossen. «So kann jeder die Elemente drucken und mithilfe eines Elektroingenieurs die Sensoren und Übertragungskabel integrieren», erklärt Sorkine-Hornung. Auch überlegen die Forschenden, in Zukunft ein Set aus 25 fertigen Bausteinen zum Kauf anzubieten.

«Wir werden das Gerät im August an der SIGGRAPH präsentieren, einer internationalen Konferenz und Ausstellung für Computergrafik und interaktive Technik. Wir hoffen dort Eindrücke zu sammeln, ob es eine Nachfrage für ein kommerzielles Angebot des Geräts gibt und was wir am Design noch verbessern könnten», sagt Sorkine-Hornung.

Das derzeitige Modell erlaubt nur, die einen Gelenke zu beugen und die anderen zu drehen. Eine Möglichkeit, das Design zu verbessern, sehen die Forschenden in Kugelgelenken, ähnlich dem menschlichen Schultergelenk. Das würde es weiter vereinfachen, die Hightech-Puppe zu verformen.

Animationskünstler durchlaufen meist Jahre der Ausbildung, um virtuelle Figuren bewegen zu lernen. Jede dieser Bewegungen ist durch sogenannte «key frames» definiert, also Schnappschüsse der Bewegung, anhand derer die Software die gesamte fliessende Bewegung errechnet.

Um eine Animationsfigur realistisch zu bewegen, muss die Künstlerin diese «key frames» festlegen, aber jeden Körperteil der Animationsfigur dafür einzeln mit der Maus in die richtige Position zu ziehen, ist zeitaufwändig und mühsam. Aus diesem Grund arbeiten Forschende an alternativen Methoden, um virtuelle Bewegungen zu steuern. Puppen als Input-Gerät sind eine Variante, welche Künstler direkt am Schreibtisch verwenden können.

Dabei beruhen einige der bisherigen Methoden darauf, die Bewegungen der Puppe mit mehreren Kameras einzufangen. Da jedoch die Hände des Künstlers die Puppe teils verdecken, kann er auf diese Weise eine Animationsfigur kaum in Echtzeit steuern. Andere Methoden umgehen dieses Problem, indem sie die Bewegungsinformation durch Sensoren in den Gelenken der Puppe erfassen.

Bislang hatten diese Puppen jedoch immer eine vordefinierte Form, zum Beispiel die eines Menschen, womit sich schlecht ein animierter Hund steuern lässt.

Literaturhinweis:
Jacobson A, Panozzo D, Glauser O, Pradalier C, Hilliges O, Sorkine-Hornung A: Tangible and Modular Input Device for Character Articulation. To be presented at ACM SIGGRAPH 2014, Vancouver.
Pdf: http://igl.ethz.ch/projects/character-articulation-input-device/tangible-and-mod…
Projektwebsite: http://igl.ethz.ch/projects/character-articulation-input-device/

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2014/06/wandelbare…

Media Contact

Angelika Jacobs ETH Zürich

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…