Mathematik gegen Risse in elektronischen Bauteilen

Temperaturverteilung im IHV-Modul (Querschnitt durch obere Lotverbindung)

BMBF fördert interdisziplinäres Forschungsvorhaben „Kontaktierungssysteme für mikrostrukturierte Bauteile“ mit 0,4 Mio. DM

Kontaktierungssysteme in der Hochleistungselektronik sind thermomechanischen Spannungen ausgesetzt, die zur Deformation der Materialien und dadurch zu mechanischem Versagen führen können. Ein interdisziplinäres Forschungsprojekt, das vom Augsburger Lehrstuhl für Angewandte Analysis/Numerik in Zusammenarbeit mit dem Lehrstuhl für Technische Elektrophysik der TU München und zwei Industriepartnern bearbeitet wird, soll durch die Simulation des Betriebsverhaltens und der Versagensmechanismen zu einer optimalen, die Gefahr von Rissbildung und Materialbruch ausschließenden bzw. minimierenden Auslegung des Aufbaus solcher Systeme führen.

In der industriellen Anwendung spielen solche Kontaktierungssysteme – z. B. Konvertermodule – eine wichtige Rolle: Sie werden in Stromrichtern zur elektrischen Energieerzeugung und -übertragung eingesetzt, ebenso bei elektrischen Antrieben in stationären Anlagen oder auch in Fahrzeugen, etwa in Hochgeschwindigkeitszügen.

Die Module haben eine Grundplatte aus Kupfer, die als Verbindung zu einem Kühlkörper dient. Auf ihr sind aktive Hochleistungshalbleiterbauelemente in Silizium-Chips integriert; diese wiederum sind auf mehreren Lagen unterschiedlicher Materialien aufgebracht, die durch Lote verbunden sind.

Bedingt durch sehr hohe Spannungen und Ströme erwärmen sich die Halbleiterbauelemente und heizen das gesamte Modul auf. Dies führt zu thermomechanischen Spannungen und somit zu Deformationen der Materialien, die mechanisches Versagen durch Rissbildung und Bruch zur Folge haben können.

Das Risiko bzw. die Wahrscheinlichkeit solcher Rissbildungen und Brüche durch eine optimale Auslegung der Modulaufbauten und der Kühlmechanismen zu vermindern oder auszuschließen, ist das Ziel des interdisziplinären Forschungsvorhabens. Hierfür wird das Betriebsverhalten solcher Modulaufbauten im Normal- wie im Störfall mathematisch modelliert und numerisch simuliert. Ebenso simuliert werden die aus Wärmespannungen resultierenden Versagensmechanismen, also die Rissbildung, die Rissfortschreitung und der schließliche Bruch.

Wie die beiden Abbildungen zeigen, geben solche numerischen Simulationen Aufschluss z. B. über die Temperaturverteilung oder den Spannungsdeviator in den Loten – Faktoren, die für die Stabilität bzw. die Riss- und Bruchanfälligkeit des gesamten Moduls von ausschlaggebender Bedeutung sind.

Das Projekt „Kontaktierungssysteme für mikrostrukturierte Bauteile“ wird im Rahmen des BMBF-Programms „Neue mathematische Verfahren in Industrie und Dienstleistung“ mit Sach- und Personalmittel in Höhe von 0,4 Mio. DM gefördert. Die Projektleitung liegt in Augsburg bei Prof. Dr. Ronald H. W. Hoppe (Lehrstuhl für Angewandte Analysis mit Schwerpunkt Numerik). Kooperationspartner sind neben dem TU München-Lehrstuhl für Technische Elektrophysik (Prof. Dr. Gerhard Wachutka) die Siemens AG (Abteilung ZT MS 4, München-Neuperlach, Prof. Dr. Eckhard Wolfgang) und die Firma eupec GmbH und Co.KG (Warstein/Belecke, Dr. Reinhard Ploss), die beide im Bereich der Hochleistungselektronik hinsichtlich der Entwicklung, der Produktion und der Vermarktung innovativer Produkte zu den weltweit führenden Anbietern zählen.

Ansprechpartner:

Prof. Dr. Ronald H. W. Hoppe
Institut für Mathematik o Universität Augsburg o Universitätsstraße 14 o D-86159 Augsburg
Telefon 0821/598-2194 o Telefax: 0821/598-2339 o e-mail: hoppe@math.uni-augsburg.de

Weitere Informationen finden Sie im WWW:

Media Contact

Klaus P. Prem idw

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung

Aktuelle Meldungen und Entwicklungen aus fächer- und disziplinenübergreifender Forschung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Mikrosystemforschung, Emotionsforschung, Zukunftsforschung und Stratosphärenforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Selen-Proteine …

Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…

Pendler-Bike der Zukunft

– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…

Neuartige Methode zur Tumorbekämpfung

Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…