Durchgewirbelt: Pulverbeschichtung im Plasma ist Grundlage für Neue Materialien

Projektmitarbeiter Dr. Brüser kontrolliert die Abscheidung der Fasern

Farben, die wie Seifenblasen in der Sonne schillern oder High-Tech-Werkstoffe zum günstigen Preis: Deutschlands nordöstlichstes Leibnizinstitut forscht an Neuen Materialien. In einer Plasma-Wirbelschichtanlage verändern Wissenschaftler des Institutes für Niedertemperatur-Plasmaphysik (INP) die Oberflächen neuartiger Grafitfasern für die Produktion leistungsfähiger Verbundwerkstoffe. In kleinsten Mengen erfolgreich erprobt, soll die Plasmabehandlung von Pulvern und Fasern nun mit größerem Materialumsatz funktionieren. Das könnte der Werkstoffindustrie eine ganz neue Dimension eröffnen.

Winzig kleine Grafitfasern schwirren durcheinander, das Plasma wird gezündet und leuchtet rötlich. Am Institut für Niedertemperatur-Plasmaphysik startet ein Experiment in der Wirbelschichtanlage zur Bearbeitung von Pulvern. Im Plasma hoch angeregte Sauerstoffmoleküle verändern die Oberfläche der Fasern. „Wir arbeiten daran, eine Vision zu verwirklichen, die vor allem für Kunststoffverarbeiter attraktiv ist: die Funktionalisierung von Kohlefasern,“ sagt Projektmitarbeiter Dr. Volker Brüser. Gebraucht werden diese für außergewöhnlich stabile und trotzdem sehr leichte faserverstärkte Kunststoffe. Solche Verbundwerkstoffe werden in der Raumfahrt, im Flugzeugbau oder für besonders edle Sportgeräte schon heute verwendet, wobei die Produktion der Kohlefasern aufwändig und teuer ist. „Wir arbeiten aber mit neuartigen Kohlefasern, sog. Vapour Grown Carbon Fibre, (VGCF),“ erklärt Dr. Brüser. „Die können in hoher Qualität so günstig produziert werden, dass man erstmals an die Massenproduktion hochwertiger Verbundwerkstoffe denken kann.“

Dazu muss aber ein geeignetes Verfahren zur Vorbehandlung der Fasern zur Verfügung stehen. „Die Kohlefasern müssen vor ihrer Weiterverarbeitung zu Verbundwerkstoffen durch die Anlagerung von Sauerstoff chemisch aktiviert werden, weil sie sich sonst nicht richtig mit dem Kunststoff verbinden,“ erklärt Dr. Brüser. Übertrage man die üblichen Verfahren zur Oxidation der Kohlefasern auf VGCF, führe dies nicht immer zu befriedigenden Ergebnissen, mitunter sogar zu einer Beschädigung der Fasern. Gute Ergebnisse brachte die Plasmabehandlung von Pulvern und Fasern im Labormaßstab. Größtes Problem war zunächst, die Oberflächen aller Teilchen gleichmäßig dem Plasma auszusetzen. Im Labor wurde gerührt, gerüttelt und geschüttelt, bis sich die Wirbelschichtanlage als geeignet erwies. Gas und Pulver werden besonders gut durchmischt und die Behandlungszeit auf wenige Sekunden verkürzt. Um eine Wirbelschicht zu erzeugen, wird durch ein Sieb jenes Gas in den Behandlungsraum geblasen, das auf der Pulveroberfläche die gewünschten Effekte hervorzurufen imstande ist. Das kann einfach Luft sein, wie im Fall der Grafitfasern. Wenn nun die Anströmung des Gases die Gewichtskraft der winzigen Körnchen ausgleicht, entsteht eine Wirbelschicht. Dann wird das Plasma gezündet, d.h. das Gas wird im Mikrowellen- oder Hochfrequenzfeld angeregt und so die Oberflächenreaktion in Gang gesetzt: Im Feld beschleunigte Elektronen spalten Moleküle und lagern deren chemisch aktive Bruchstücke an die Faseroberfläche an.

Dieses Verfahren von Laborgröße auf industrielle Maßstäbe zu übertragen ist eine Herausforderung an die Plasmatechnik. Große Pulvermengen müssen gleichmäßig und schnell behandelt werden. Dazu wurde die Wirbelschichtanlage des INP so eingerichtet, dass bei laufendem Betrieb kontinuierlich Grafitfasern zu- und abgeführt werden können. Die Größe der Anlage ist bereits so bemessen, dass eine Industrieanlage nach dem gleichen Prinzip aufgebaut sein könnte. Noch bis 2003 können die Wissenschaftler mit dieser Pilotanlage Erfahrungen sammeln, so lange läuft ein Forschungsprojekt, das vom Bundesministerium für Bildung und Forschung finanziert wird.

Dann sollen die Erkenntnisse auch dazu genutzt werden, weitere Anwendungsmöglichkeiten für plasmabehandelte Pulver oder Fasern zu erschließen. Denkbar ist vieles: Man gibt Kunststoffen oder anderen Materialien als Pulver oder Granulat bestimmte Oberflächenfunktionen, die sie nach ihrer Verarbeitung zu einem Formteil behalten. Das ist besonders vorteilhaft, wenn großformatige Teile veredelt werden sollen, z.B. Schiffsrümpfe. Bisher müssen die Plasmaanlagen an die Größe des Formteils angepasst werden, um die Oberflächen der Teile beispielsweise für eine spätere Lackierung vorzubereiten. Oder in der Pharmaindustrie: Die Geschwindigkeit, mit der Tabletten ihre medizinischen Wirkstoffe abgeben, könnte gesteuert werden, indem man den pulverförmigen Wirkstoff mit einer wasserabweisenden Schicht umhüllt. Farbhersteller könnten mittels plasmabehandelter Zusätze oder Farbpartikel völlig neue Effekte erzielen, wie eine Farbe, die wie eine Seifenblase im Sonnenlicht schillert. Die Wirbelschichtanlage des INP ist ein wichtiger Schritt in Richtung dieser neuen Dimension von Plasmaanwendungen.

Media Contact

Anke Wagner idw

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung

Aktuelle Meldungen und Entwicklungen aus fächer- und disziplinenübergreifender Forschung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Mikrosystemforschung, Emotionsforschung, Zukunftsforschung und Stratosphärenforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diagramm der Kristallgitterstruktur von Lithium-Titan-Phosphat mit negativen thermischen Expansionseigenschaften zur Verbesserung der Leistung von Lithium-Ionen-Batterien.

Aufladen der Zukunft: Batterien für extreme Kälte dank negativer thermischer Ausdehnung

Die meisten Feststoffe dehnen sich aus, wenn die Temperatur steigt, und schrumpfen, wenn sie abkühlen. Manche Materialien zeigen jedoch das Gegenteil und dehnen sich bei Kälte aus. Lithiumtitanphosphat ist eine…

Darstellung der selektiven RNA-Technologie zur Bekämpfung von Glioblastomzellen.

Selbstzerstörende Krebszellen: Durchbruch in der RNA-Forschung

Jülicher Wissenschaftler nutzen neuartige RNA-Technologie, um Tumore im Gehirn selektiv auszuschalten. Eine anpassbare Plattformtechnologie zur Zerstörung von Glioblastom-Krebszellen Mit einer speziellen RNA-Molekül-Technologie hat ein Team unter der Leitung von Jülicher…

HFpEF-Patienten bei Ausdauer- und Krafttraining im Rahmen einer klinischen Studie zur Bewegungstherapie bei Herzinsuffizienz.

Ausdauertraining: Wie es das Leben von Herzinsuffizienz-Patienten verbessert

Können Kraft- und Ausdauertraining für Patienten mit einer bestimmten Form von Herzinsuffizienz von Vorteil sein? Ein Forschungsteam aus Greifswald hat diese Frage zusammen mit sieben weiteren Forschungszentren in Deutschland untersucht….