Das Geheimnis starker Zähne: Nanostrukturen unter Spannung

Biostruktur des Dentin: Tubuli und Netz von Kollagenfasern, in denen mineralische Nanopartikel eingebettet sind – angespannt links, entspannt rechts Jean-Baptiste Forien, © Charité – Universitätsmedizin Berlin

Einem interdisziplinären Team um Forscher der Charité – Universitätsmedizin Berlin ist es gelungen, die Biostruktur der Zahnsubstanz Dentin und deren innere Mechanismen zu entschlüsseln. Anders als Knochen kann Dentin Risse oder Brüche weder reparieren noch heilen.

Es gilt allerdings als eines der beständigsten organischen Materialien. Wie die Wissenschaftler nun erstmals zeigen: Innere Spannungen sorgen dafür, dass Schäden nicht entstehen oder begrenzt bleiben. Was zur Widerstandskraft gesunder Zähne führt, ist in der Fachzeitschrift Nano Letters* veröffentlicht.

Einem interdisziplinären Team um Forscher der Charité – Universitätsmedizin Berlin ist es gelungen, die Biostruktur der Zahnsubstanz Dentin und deren innere Mechanismen zu entschlüsseln. Anders als Knochen kann Dentin Risse oder Brüche weder reparieren noch heilen.

Es gilt allerdings als eines der beständigsten organischen Materialien. Wie die Wissenschaftler nun erstmals zeigen: Innere Spannungen sorgen dafür, dass Schäden nicht entstehen oder begrenzt bleiben. Was zur Widerstandskraft gesunder Zähne führt, ist in der Fachzeitschrift Nano Letters* veröffentlicht.

Zähne halten im Idealfall ein Leben lang, auch wenn sie täglich enormen Kräften ausgesetzt sind. Bislang war unklar, warum das Dentin, eine knochenähnliche Substanz, die den eigentlichen Zahn bildet, so belastbar ist. Das Team um Dr. Paul Zaslansky am Julius Wolff Institut (JWI) der Charité hat nun die Nanostrukturen von Dentin analysiert. Mineralische Nanopartikel sind demnach in ein dichtes Netz aus Kollagenfasern eingebettet. Ziehen sich diese Strukturen zusammen, werden die Mineralteilchen komprimiert. Die dabei entstehenden inneren Spannungen erhöhen die Belastbarkeit der Biostruktur.

Einblick in die winzigen Strukturen haben die Forscher durch die Arbeit an wissenschaftlichen Großgeräten erhalten, die hochbrillante Strahlung von Tetrahertz- bis in den Röntgenbereich erzeugen: Die Synchrotronquelle BESSY II des Helmholtz-Zentrums Berlin für Materialien und Energie und die ESRF – European Synchrotron Radiation Facility in Grenoble. Das Wissen um innere Vorspannungen wird in den Ingenieurwissenschaften bewusst eingesetzt, um Materialien für technische Anwendungen gezielt zu verstärken. Die Biologie kennt diesen Trick offenbar schon viel länger und wendet ihn in unseren Zähnen an.

Um das Prinzip nachzuweisen, haben die Forscher die Feuchtigkeit in Dentinproben verändert. Die Messungen zeigen, wie die Spannung der Mineralpartikel zunimmt, wenn die Strukturfasern schrumpfen. „Dieser Mechanismus trägt dazu bei, das Entstehen von Rissen zu verhindern. Die Art und Weise der Kompression sorgt zudem dafür, dass die innersten Bereiche des Zahns und damit die empfindliche Pulpa weitgehend vor Schäden geschützt bleiben“, erklärt Dr. Paul Zaslansky vom Julius Wolff Institut der Charité.

Die Wissenschaftler stellten in weiteren Experimenten fest, dass die Verbindung zwischen Mineralpartikeln und Kollagenfasern durch Erhitzen geschwächt wird, wobei die Belastbarkeit von Dentin abnimmt. “Wir glauben, dass die inneren Spannungen zwischen Mineralpartikeln und Kollagenfasern im Gleichgewicht sein müssen. Das ist entscheidend für eine dauerhafte Belastbarkeit von Zähnen“, sagt Jean-Baptiste Forien, Erstautor der Studie.

Die Erkenntnisse erklären, warum künstlicher Zahnersatz weniger belastbar ist als gesunde Zahnsubstanz: Die keramischen Materialien sind einfach zu „passiv“ gegenüber Belastung, da ihnen die inneren Mechanismen fehlen, die der natürlichen Zahnsubstanz zu Stabilität verhelfen. „Vielleicht liefern die Ergebnisse der Arbeit Anregungen für die Entwicklung belastbarer keramischer Materialien zur Zahnbehandlung oder als Zahnersatz”, hofft Dr. Zaslansky.

An der DFG-geförderten Untersuchung zur Nanostruktur des Dentins waren neben den Charité-Wissenschaftlern Teams der Technischen Universität Berlin, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung, Potsdam und des Technion – Israel Institute of Technology, Haifa beteiligt.

*Jean-Baptiste Forien, Claudia Fleck, Peter Cloetens, Georg Duda, Peter Fratzl, Emil Zolotoyabko, Paul Zaslansky. Compressive Residual Strains in Mineral Nanoparticles as a Possible Origin of Enhanced Crack Resistance in Human Tooth Dentin. Nano Letters. 2015 May 29. doi: 10.1021/acs.nanolett.5b00143.

Kontakt:
Dr. Paul Zaslansky
Julius Wolff Institut
Berlin-Brandenburg Center for Regenerative Therapies (BCRT)
Charité – Universitätsmedizin Berlin
t: +49 30 450 559 589
E-Mail: paul.zaslansky@charite.de

http://www.charite.de
http://jwi.charite.de
http://www.esrf.eu
https://www.helmholtz-berlin.de
http://www.mpikg.mpg.de
http://www.technion.ac.il/en/
http://www.tu-berlin.de

Media Contact

Dr. Julia Biederlack idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung

Aktuelle Meldungen und Entwicklungen aus fächer- und disziplinenübergreifender Forschung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Mikrosystemforschung, Emotionsforschung, Zukunftsforschung und Stratosphärenforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…