Funktion bestimmt Form

Bei dem sogenannten inversen Moleküldesign wird die Struktur-Eigenschafts-Beziehung umgedreht: Nicht die Struktur gibt die Eigenschaften der Substanz vor, sondern die gewünschten Eigenschaften definieren die Struktur einer Substanz.
(c) Pixabay 4d446b7359 - Molekuele Chemie

BIFOLD – Neuer KI-Algorithmus generiert innovative Substanzen auf Basis von gewünschten Eigenschaften.

In der Medizin, in der Batterieforschung oder in der Materialwissenschaft – überall sind Wissenschaftler*innen auf der Suche nach innovativen Substanzen. Dabei können die Forscher*innen oft sehr detailliert die gewünschten chemischen und physikalischen Eigenschaften bis auf die atomare Ebene vorhersagen. Allein der Raum aller potenziellen chemischen Verbindungen ist so riesig, dass es Jahre dauern würde, bis die geeignete Substanz gefunden wird. Eine interdisziplinäre Forschergruppe des Berlin Institute for the Foundations of Learning and Data (BIFOLD) an der Technischen Universität Berlin hat jetzt einen KI-Algorithmus entwickelt, der mithilfe von KI sogenanntes inverses chemisches Design umsetzt und so  gezielt Moleküle auf Basis ihrer gewünschten Eigenschaften generiert. Ihre Publikation „Inverse design of 3d molecular structures with conditional generative neural networks” erschien jetzt in dem renommierten Magazin Nature Communications.

Die Suche nach geeigneten Molekülen für spezielle medizinische oder industrielle Anwendungen ist ein extrem aufwändiger und teurer Prozess. „Rein hypothetisch existieren unfassbar viele mögliche Strukturen, von denen aber nur ein winziger Bruchteil die speziellen chemischen oder physikalischen Eigenschaften hat, die in einer bestimmten Anwendung gefragt sind”, erläutert Dr. Kristof Schütt, BIFOLD Junior Fellow an der TU Berlin. In den letzten Jahren wurde eine Fülle von Methoden entwickelt, die in der Lage sind, die chemischen Eigenschaften und energetischen Zustände von gegebenen Substanzen mit Hilfe von KI vorherzusagen. Selbst mit diesen effizienten Methoden erweist sich die Suche nach Molekülen mit spezifischen Eigenschaften in der Praxis als schwierig, da nach wie vor eine überwältigende Anzahl an Kandidaten durchsucht werden muss.

Die Struktur-Eigenschaftsbeziehung wird umgedreht

Die BIFOLD-Wissenschaftler konzentrierten sich daher auf das sogenannte inverse Moleküldesign, bei dem die Struktur-Eigenschafts-Beziehung umgedreht wird: Die Struktur gibt nicht die Eigenschaften vor, sondern die Eigenschaften definieren die Struktur. Die Herausforderung besteht darin, direkt molekulare Strukturen zu konstruieren, die einer bestimmten Gruppe von Eigenschaften entsprechen. Der entwickelte KI-Algorithmus basiert auf einem sogenannten tiefen generativen neuronalen Netz, in dessen Entwicklung Vorwissen über grundsätzliche, physikalische Gegebenheiten eingeflossen ist. Das Netz lernt nur anhand einiger tausend Beispielmoleküle die komplexen Zusammenhänge zwischen chemischen Strukturen und ihren Eigenschaften. „Danach können verschiedene Eigenschaftsprofile vorgeben werden und das generative neuronale Netz, schlägt dazu eine überschaubare Menge an passenden Molekülen und Verbindungen vor. Nur diese Kandidaten müssen dann von den Chemiker*innen untersucht werden“, erläutert Kristof Schütt. Die Wissenschaftler konnten zeigen, dass dieses inverse chemische Design sogar dann funktioniert, wenn das gesuchte Eigenschaftsprofil nur teilweise von den bereits bekannten Beispielmolekülen abgedeckt wird.

Das interdisziplinäre Team erwartet, dass derartige Algorithmen, im Zusammenspiel mit weiteren KI-getriebenen Ansätzen und quantenchemischen Methoden, die Suche nach neuen Molekülen und Materialien in vielen praktischen Bereichen stark beschleunigen können. Klaus-Robert Müller, BIFOLD Co-Direktor und Professor für maschinelles Lernen an der TU Berlin, ergänzt: „Ich sehe hier ein enormes Potential, wenn sowohl das Entwerfen der Moleküle als auch deren Analyse und Simulation mit Methoden der künstlichen Intelligenz unterstützt werden. Dies kann zum Beispiel bei der Entwicklung von Medikamenten hilfreich sein oder die Suche nach neuartigen Materialien für Batterien und Solarzellen beschleunigen.“

Publikation

Niklas W. A. Gebauer, Michael Gastegger, Stefan S. P. Hessmann, Klaus-Robert Müller and Kristof T. Schütt, Nature Communications: „Inverse design of 3d molecular structures with conditional generative neural networks”: https://doi.org/10.1038/s41467-022-28526-y

Kontakt

Prof. Dr. Klaus-Robert Müller
BIFOLD/TU Berlin
klaus-robert.mueller@tu-berlin.de
Tel:+49 (0)30 314-78621

https://www.tu.berlin/ueber-die-tu-berlin/profil/pressemitteilungen-nachrichten/2022/februar/funktion-bestimmt-form/

Media Contact

Stefanie Terp Stabsstelle Kommunikation, Events und Alumni
Technische Universität Berlin

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung

Aktuelle Meldungen und Entwicklungen aus fächer- und disziplinenübergreifender Forschung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Mikrosystemforschung, Emotionsforschung, Zukunftsforschung und Stratosphärenforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…