Kampf gegen Krebs auf molekularer Ebene verstehen
Möglichst viele Tumorzellen zerstören und gleichzeitig möglichst wenige, gesunde Zellen schädigen. Das gilt als Grundfeste der Radiochemotherapie. Innsbrucker Ionenphysiker rund um Assoz.-Prof. Stephan Denifl untersuchen auf molekularer Ebene die Entwicklung neuer Radiosensitizer im Kampf gegen Krebs.
Der bisher wenig erforschte Hintergrund: Bei ionisierender Strahlung wird auch eine immense Zahl langsamer, sekundärer Elektronen freigesetzt, die die Wirkung dieser Substanzen unterstützen kann.
Bösartige Tumorzellen sind an Sauerstoffmangel sehr gut angepasst. Durch den Einsatz von Radiosensitizern soll daher der Sauerstoffgehalt im Krebsgewebe auf ein möglichst hohes Niveau gebracht werden, um dadurch die Empfindlichkeit entarteter Zellen auf ionisierende Strahlung zu erhöhen.
Seit wenigen Jahren werden in diesem Kontext bestimmte Derivate der Nitroverbindung „Nitroimidazol“ mit der Summenformel C3H3N3O2 erforscht. „Wir haben jetzt herausgefunden, dass es bei diesen Derivaten exakt auf die molekulare Struktur ankommen wird, ob Nitroimidazol durch langsame, sekundäre Elektronen zerstört wird oder nicht“, sagt Denifl. Diese Ergebnisse publizierte das Team nun in der Printausgabe der renommierten Fachzeitschrift Angewandte Chemie International Edition. Gefördert werden diese Forschungen vom österreichischen Forschungsfonds FWF.
Brückenschlag zur Medizin wird intensiviert
Das Team hat im Zuge des jüngsten Experimentes in einer Spezialkammer Proben von 4-Nitroimidazol verdampft. Anschließend wurden diese Moleküle durch eine Kapillare geleitet und mit langsamen Elektronen beschossen. „Wie die massenspektrometrische Analyse der Reaktionsprodukte zeigt, tritt der Radiosensitizer in sehr starke Wechselwirkung mit langsamen Elektronen.
Die Moleküle werden dabei zersetzt. Als Zerfallsprodukt entsteht eine ganze Reihe von Hydroxyl-Radikalen (OH), deren schädliche Wirkung auf unsere DNA bekannt ist“, betont der Ionenphysiker. Bei einem anderen bisher untersuchten Derivat von Nitroimidazol tritt anstelle der ursprünglichen Position eines Wasserstoff-Atoms eine Methyl-, also CH3-Gruppe. „Bereits diese Methylierung unterdrückt höchst überaschenderweise die komplette elektronen-induzierte Chemie und damit positive Effekte im möglichen Einsatz in der Radiochemotherapie“, erklärt der Forscher.
Aufgrund dieser unter anderem in Zusammenarbeit mit Dr.in Linda Feketeová vom Institut für Kernphysik im französischen Lyon jetzt erforschten Reaktionen plant das Innsbrucker Team die Untersuchung weiterer Nitroimidazol-Derivate und will dabei eng mit dänischen Medizinern rund um Prof. Michael Horsman vom Universitätshospital in Aarhus zusammenarbeiten.
„Die klinischen Tests in Aarhus ergaben je nach verwendetem Nitroimidazol-Derivat höchst unterschiedliche Behandlungserfolge. Dies ist ein weiterer Grund, warum wir die Sensitivierung gegenüber Bestrahlung auf molekularer Ebene verstehen wollen. Wir hoffen auch auf sehr lange Sicht, ein Molekül als neuen Radiosensitizer zu synthetisieren und dessen Effekte auf molekularer Ebene zu testen“, betont Denifl.
Der 37jährige leitet gemeinsam mit Prof. Paul Scheier die Arbeitsgruppe Nano-Bio-Physik am Institut für Ionen- und Angewandte Physik der Universität Innsbruck. Auf Basis international renommierter, langjähriger Grundlagenforschungen des früheren Institutsleiters und heutigen Rektors der Universität Innsbruck, Prof. Dr. Dr. h.c. mult Tilmann Märk, sorgt diese Gruppe international immer wieder in der Erforschung der Rolle langsamer Elektronen bei der Entstehung von Strahlenschäden und Krebs sowie bei der damit eng verknüpften Rolle dieser Elementarteilchen bei der Bildung erster, komplexer Biomoleküle im Weltall für internationales Aufsehen.
Bilder: http://www.uibk.ac.at/ionen-angewandte-physik/media/photos.html
Publikation:
Reactions in Nitroimidazole Triggered by Low-Energy (0–2 eV) Electrons: Methylation at N1-H Completely Blocks Reactivity. Katrin Tanzer, Linda Feketeová, Benjamin Puschnigg, Paul Scheier, Eugen Illenberger, Stephan Denifl. Angewandte Chemie International Edition, Volume 53, Issue 45, November 3, 2014, Pages: 12240–12243.
DOI: http://dx.doi.org/10.1002/anie.201407452
Kontakt:
Assoz.Prof. Dr. Stephan Denifl
Institut für Ionenphysik und Angewandte Physik
Technikerstrasse 25, A-6020 Innsbruck
Telefon: +43(0)512/507 52662
Mail: Stephan.Denifl@uibk.ac.at
Web: http://www.uibk.ac.at/ionen-angewandte-physik/nanobio/index.html.de
Mag.a Gabriele Rampl
Public Relations Ionenphysik
Telefon: +43(0)650/2763351
Mail: office@scinews.at
Web: http://www.uibk.ac.at/ionen-angewandte-physik/media/
Media Contact
Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung
Aktuelle Meldungen und Entwicklungen aus fächer- und disziplinenübergreifender Forschung.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Mikrosystemforschung, Emotionsforschung, Zukunftsforschung und Stratosphärenforschung.
Neueste Beiträge
Kompaktes LCOS-Mikrodisplay mit schneller CMOS-Backplane
…zur Hochgeschwindigkeits-Lichtmodulation. Forscher des Fraunhofer-Instituts für Photonische Mikrosysteme IPMS haben in Zusammenarbeit mit der HOLOEYE Photonics AG ein kompaktes LCOS-Mikrodisplay mit hohen Bildwiederholraten entwickelt, das eine verbesserte optische Modulation ermöglicht….
Neue Perspektiven für die Materialerkennung
SFB MARIE geht in 3. Förderperiode: Großer Erfolg für die Terahertz-Forschung: Wissenschaftler:innen der Universität Duisburg-Essen und der Ruhr-Universität Bochum erforschen die mobile Materialerkennung seit 2016 im Sonderforschungsbereich/Transregio MARIE. Mit 14,8…
Fahrradhelme aus PLA: Sportartikel mit minimiertem CO2-Fußabdruck
Design, Lifestyle und Funktionalität sind zentrale Kaufkriterien bei Sportartikeln und Accessoires. Für diesen boomenden Markt werden viele Produkte aus Asien nach Europa eingeführt, die nicht ökologisch nachhaltig sind. Forschende des…