Physiker schrumpfen Teilchenbeschleuniger
Für kompakte Terahertz-Beschleuniger sehen die Autoren zahlreiche Anwendungen in Materialforschung, Medizin und Teilchenphysik sowie bei Röntgenlasern. Terahertz-Strahlung liegt im elektromagnetischen Spektrum zwischen Infrarotlicht und Mikrowellen.
Üblicherweise wird in Teilchenbeschleunigern elektromagnetische Strahlung im Hochfrequenzbereich von Radiowellen verwendet, bei DESYs Beschleuniger PETRA III beträgt dieser Wert beispielweise 500 Megahertz. Die Wellenlänge der hier verwendeten Terahertz-Strahlung ist rund tausendmal kürzer.
„Der Vorteil: Alles wird tausendmal kleiner,“ erläutert Kärtner, der auch Professor an der Universität Hamburg und am Massachusetts Institute of Technology (MIT) in den USA sowie Mitglied im Hamburger Exzellenzcluster Center for Ultrafast Imaging (CUI) ist.
Für ihren Prototyp, der in Kärtners Labor am MIT in Boston aufgebaut wurde, verwendeten die Forscher ein spezielles, mikrostrukturiertes Beschleunigermodul, das für Terahertz-Strahlung maßgeschneidert ist. Aus einer Art Elektronenkanone, die von der Gruppe um den CFEL-Professor Dwayne Miller, Direktor am Max-Planck-Institut für Struktur und Dynamik der Materie und ebenfalls CUI-Mitglied, bereitgestellt wurde, schossen die Physiker schnelle Elektronen in das Miniatur-Beschleunigermodul, die dort von der eingespeisten Terahertz-Strahlung weiter beschleunigt wurden. Die Energie der Teilchen erhöhte sich in diesem ersten Prototyp eines Terahertz-Beschleunigers um sieben Kiloelektronenvolt (keV).
„Diese Beschleunigung ist noch nicht sehr stark, aber der Versuch belegt, dass dieses Prinzip in der Praxis funktioniert“, erläutert Ko-Autor Arya Fallahi vom CFEL, der für die theoretischen Berechnungen zuständig war.
„Die Theorie zeigt, dass ein Beschleunigungsgradient von bis zu einem Gigavolt pro Meter möglich ist.“ Das liegt mehr als zehn Mal über dem Wert, den die besten konventionellen Beschleunigermodule heute erreichen. Eine noch stärkere Beschleunigung verspricht die ebenfalls experimentelle Plasmabeschleuniger-Technik, die allerdings auch deutlich stärkere Laser zum Betrieb erfordert als Terahertz-Beschleuniger.
Die Terahertz-Technik sei sowohl im Hinblick auf künftige Linearbeschleuniger für die Teilchenphysik interessant, als auch für den Bau kompakter Röntgenlaser und Elektronenquellen für die Materialforschung sowie für die medizinische Anwendung von Röntgen- und Elektronenstrahlen, schreiben die Physiker.
„Die rasanten Fortschritte, die wir bei der Erzeugung von Terahertz-Strahlung mit optischen Methoden erleben, wird künftig die Entwicklung von Terahertz-Beschleunigern für diese Anwendungen ermöglichen“, betont Erstautor Emilio Nanni vom MIT.
In den kommenden Jahren möchten die Hamburger CFEL-Physiker auf Terahertz-Basis einen experimentellen kompakten Freie-Elektronen-Röntgenlaser (XFEL) im Laborformat aufbauen. Dieses Projekt wird von einem Synergy Grant des European Research Council unterstützt.
Sogenannte Freie-Elektronen -Laser (FEL) erzeugen Laserblitze, indem sie schnelle Elektronen aus einem Teilchenbeschleuniger auf einen Slalomkurs schicken, wobei sie in jeder Kurve Licht abgeben. Nach diesem Prinzip arbeitet auch der Europäische Röntgenlaser European XFEL, der im Rahmen eines internationalen Konsortiums derzeit vom Hamburger DESY-Campus bis ins benachbarte Schenefeld in Schleswig-Holstein gebaut wird. Diese Anlage ist mehr als drei Kilometer lang.
Der experimentelle XFEL auf Basis der Terahertz-Technik soll dagegen nicht einmal einen Meter messen. Allerdings werden seine Blitze nicht so energiereich sein wie aus einer großen Anlage. Dafür lassen sie sich kürzer machen und könnten dadurch in der Spitze kurzzeitig fast dieselbe Helligkeit erreichen. „Von so einem Gerät erwarten wir deutlich kürzere Röntgenpulse von unter einer Femtosekunde“, erläutert Kärtner. „Damit erhoffen wir uns neue Einblicke in extrem schnelle chemische Prozesse wie zum Beispiel die Photosynthese.“
Wenn Forscher die Photosynthese im Detail verstehen lernen, würde sich die Chance eröffnen, diesen effizienten Prozess künstlich nachzubilden und damit verbesserte Solarzellen zu bauen und neue Möglichkeiten zur CO2-Reduktion zu finden. Darüber hinaus interessieren sich Forscher für zahlreiche andere chemische Reaktionen.
„Die Photosynthese ist nur ein Beispiel für alle möglichen katalytischen Prozesse, die wir erkunden wollen“, betont Kärtner. Der kompakte Röntgenlaser eignet sich grundsätzlich auch, um Pulse in großen derartigen Anlagen auszulösen und dadurch deren optische Qualität zu verbessern. Außerdem könnten bestimmte medizinische Abbildungsverfahren von den verbesserten Eigenschaften der neuen Röntgenquelle profitieren.
Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.
Originalveröffentlichung
„Terahertz-driven linear electron acceleration“; Emilio A. Nanni, Wenqian R. Huang, Kyung-Han Hong, Koustuban Ravi, Arya Fallahi, Gustavo Moriena, R. J. Dwayne Miller & Franz X. Kärtner; „Nature Communications”, 2015; DOI: 10.1038/NCOMMS9486
Media Contact
Weitere Informationen:
http://www.desy.de/Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung
Aktuelle Meldungen und Entwicklungen aus fächer- und disziplinenübergreifender Forschung.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Mikrosystemforschung, Emotionsforschung, Zukunftsforschung und Stratosphärenforschung.
Neueste Beiträge
Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen
Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…
Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen
Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…
Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität
HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…