Wie Hirnregionen einander zuhören

Während des fokussierten Zuhörens werden auch Hirnregionen eingebunden, die mit der gezielten Ausrichtung von Aufmerksamkeit assoziiert sind (Abb.: Alavash et al.)

Die Fähigkeit, einer Person zuzuhören und währenddessen ablenkende Geräusche und Stimmen auszublenden, ist abhängig davon, wie gut die Kommunikation von Hirnregionen untereinander auf das aufmerksame Zuhören eingestellt ist.

Eine interdisziplinäre Forschergruppe, bestehend aus einem Biomedizin-Ingenieur, einer Sprachwissenschaftlerin und einem Psychologen der Universität zu Lübeck, konnte nun zeigen, dass erfolgreiches Sprachverstehen in diesen alltäglichen Situationen mit einer fein abgestimmten Umgruppierung der Hirnnetzwerke einhergeht.

Stellen Sie sich vor, Sie säßen in einem gut besuchten Restaurant. Sie versuchen, Ihrer Begleitung am anderen Ende des Tisches zuzuhören, während Sie von der Vielfalt der Geräusche um Sie herum abgelenkt werden.

Wir alle hören zwar in erster Line mit unseren Ohren, aber die Fähigkeit, unsere Aufmerksamkeit auf einen bestimmten Sprecher zu fokussieren, beruht auf dem Zusammenspiel von unterschiedlichen Arealen des menschlichen Gehirns.

Wie gut jemand in der Lage ist, trotz schwieriger Bedingungen fokussiert zuzuhören, ist von Mensch zu Mensch verschieden. Forscher der Universität zu Lübeck haben nun herausgefunden, dass sich diese Unterschiede zwischen Individuen über die Unterschiede in der flexiblen Anpassung der Kommunikation von räumlich getrennten Hirnregionen erklären lassen.

Die Kommunikation in unserem Gehirn wird durch das Zusammenspiel unterschiedlicher Netzwerke strukturiert. Diese ähneln den uns eher bekannten Formen von Netzwerken wie beispielsweise denen von Flugverbindungen zwischen verschiedenen Flughäfen oder auch Verbindungen zwischen Freunden in sozialen Netzwerken.

All diese Netzwerksysteme bestehen aus vielen einzelnen Knotenpunkten – in unserem Fall den unterschiedlichen Hirnregionen – und den Verbindungen zwischen diesen Knotenpunkten.

Eine weitere wichtige Eigenschaft von Netzwerken ist die Bündelung von Knotenpunkten und Verbindungen in kleinere Einheiten oder „Module“. Diese so genannte „Modularität“ eines Netzwerkes ist umso ausgeprägter, je stärker sich das Gesamtnetzwerk in Gruppen von untereinander eng verknüpften Knotenpunkten einteilen lässt.

Diese Strukturierung der Hirnnetzwerke erlaubt einen koordinierten und zielgerichteten Informationsfluss im Gehirn.

Die Lübecker Wissenschaftler der Forschungsgruppe „Auditive Kognition“ haben nun untersucht, inwiefern die Art und Weise, mit der Gehirnregionen innerhalb des Netzwerks miteinander kommunizieren, mitbestimmend für unseren Hörerfolg ist.

„Wir nahmen an, dass zur Anpassung an eine schwierige Hörsituation auch eine entsprechende Anpassung der Kommunikation zwischen den Gehirnmodulen erfolgen muss“, erklärt Co-Studienleiter Dr. Mohsen Alavash. „Dabei haben wir insbesondere die Aufteilung von größeren Netzwerken in kleinere Netzwerkmodule untersucht. Wir erwarteten, dass sich die Organisation und damit die Kommunikation zwischen diesen Netzwerkmodulen in Anpassung an eine schwierige Höraufgabe verändern würde.“

Dazu zeichneten die Forscher die Gehirnaktivität mittels Magnetresonanztomographie auf, während die Studienteilnehmer entweder ruhig im Scanner lagen oder ihre Aufmerksamkeit auf einen von zwei gleichzeitig über Kopfhörer dargebotenen Sprechern richten sollten. Wie erwartet, waren einige Teilnehmer besser dazu in der Lage, die Worte des zu folgenden Sprechers wiederzugeben.

Lassen sich die beobachteten Unterschiede in der Fähigkeit, der Sprache eines bestimmten Sprechers zu folgen, anhand von Unterschieden in der Kommunikation in Netzwerken des Gehirns erklären? „Wir konnten eine Veränderung in der Gruppierung von Modulen feststellen, wenn die Teilnehmer vom Ruhezustand zu der anspruchsvollen Höraufgabe wechselten“, erklärt Co-Studienleiterin Dr. Sarah Tune.

„Personen, bei denen eine stärkere Umstrukturierung der Hirnmodule zu beobachten war – was wir als bessere neuronale Anpassung an die Aufgabe deuten – zeigten tatsächlich eine bessere Leistung in der Höraufgabe“, ergänzt Prof. Dr. Jonas Obleser, Leiter der Forschungsgruppe Auditive Kognition. Die Wissenschaftler konnten zeigen, dass während des fokussierten Zuhörens nicht nur bekannte Hörregionen beansprucht, sondern auch Hirnregionen eingebunden wurden, die mit der gezielten Ausrichtung von Aufmerksamkeit assoziiert sind.

Die Forscher hoffen nun, dass das bessere Verständnis dieser Umstrukturierung von Hirnnetzwerken und des damit einhergehenden individuell unterschiedlichen Hörerfolgs zukünftig zu Fortschritten in der Behandlung von Sprachverständnisschwierigkeiten sowie der Weiterentwicklung von Hörgeräten beitragen kann.

Originalpublikation
Alavash M, Tune S, Obleser J (2018) Modular reconfiguration of an auditory-control brain network supports adaptive listening behavior. Proc Natl Acad Sci USA, online 26. Dezember 2018. DOI: doi.org/10.1073/pnas.1815321116

Media Contact

Rüdiger Labahn idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-luebeck.de

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung

Aktuelle Meldungen und Entwicklungen aus fächer- und disziplinenübergreifender Forschung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Mikrosystemforschung, Emotionsforschung, Zukunftsforschung und Stratosphärenforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…