Künstliche Intelligenz (KI) und Vorurteil
Mit Tools wie Midjourney lassen sich Texte in Bilder umwandeln. Die Ergebnisse sind beeindruckend detailliert und realitätsnah, allerdings nicht frei von Stereotypen. Hier setzt das von der Bayerischen Forschungsstiftung geförderte Projekt der THI-Professoren Torsten Schön und Matthias Uhl an: Die Forscher wollen der KI die Klischees abtrainieren.
Das Ergebnis ist nicht frei von Vorurteilen (Foto: THI)
Tippt man in das Text-to-Image-Tool Midjourney „Picture of a nurse“ ein, zu Deutsch „Bild einer Krankenpflegerin bzw. eines Krankenpflegers“ ein, ist das Ergebnis bemerkenswert: Die KI generiert ausschließlich Bilder von jungen Frauen mit langen Haaren, allesamt weiß und normschön. Damit reproduziert das Tool nicht nur Schablonen, es gelingt ihm auch nicht, gesellschaftliche Vielfalt abzubilden und den „male gaze“, den männlich-sexualisierten Blick, zu überwinden. Genau das wollen Professor Torsten Schön und Professor Matthias Uhl an der Technischen Hochschule Ingolstadt (THI) mit ihrem interdisziplinären Forschungsprojekt „EvenFAIr“ ändern.
Der Computer Vision-Professor Schön und der KI-Ethiker Uhl haben sich zum Ziel gesetzt, Fairness- und Diversitätskriterien zu implementieren. „Immer mehr Menschen nutzen generative Modelle wie ChatGPT, DALL-E oder Midjourny“, erklärt Schön. „Diese Tools berücksichtigen aber keine Fairnesskriterien, sondern reproduzieren und verstärken zum Teil Vorurteile.“ Das sei bedenklich, da die erzeugten Bilder nachweislich Einfluss auf die Meinungsbildung der Nutzerinnen und Nutzer haben. „Zudem ist bei sicherheitskritischen Anwendungen eine ausführliche Abwägung von Fairnesskriterien notwendig, um keine Personengruppen zu benachteiligen. Es ist fatal, wenn dunkelhäutige Menschen im Straßenverkehr von KI-Algorithmen schlechter erkannt werden und damit ein höheres Risiko haben, von autonomen Fahrzeugen übersehen zu werden.“
Daher sei es von enormer Wichtigkeit, eine Methodik zu entwickeln, um Fairness in KI-Modellen messbar zu machen und bereits während der Entwicklung in den Trainingsprozess eingreifen zu können. Das Ziel des Forschungsvorhabens von Schön und Uhl, das in Kooperation mit e:fs konzipiert wurde, ist es, Möglichkeiten zu finden, um generative KI-Modelle standardisiert auf Fairnesskriterien zu überprüfen und ein Toolset zu haben, das diese Kriterien im Trainingsprozess etabliert, um faire generative KI-Modell zu gewährleisten: kurz eine KI ohne Vorurteile.
Originalpublikation:
https://www.thi.de/hochschule/aktuelles/news/kuenstliche-intelligenz-ki-und-voru…
Media Contact
Alle Nachrichten aus der Kategorie: Kommunikation Medien
Technische und kommunikationswissenschaftliche Neuerungen, aber auch wirtschaftliche Entwicklungen auf dem Gebiet der medienübergreifenden Kommunikation.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Interaktive Medien, Medienwirtschaft, Digitales Fernsehen, E-Business, Online-Werbung, Informations- und Kommunikationstechnik.
Neueste Beiträge
Die Roboterhand lernt zu fühlen
Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…
Regenschutz für Rotorblätter
Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…
Materialforschung: Überraschung an der Korngrenze
Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…