Im Fertigungsprozess lassen sich Bauteile spezifisch optimieren

In nahezu allen technischen Bereichen werden metallische Strukturen eingesetzt, die jeweils spezifischen Anforderungsprofilen unterliegen und ihrem Einsatz entsprechend den verschiedensten Belastungen ausgesetzt sind.

Sonderforschungsbereich untersucht Einstellen lokaler Metall-Eigenschaften

Bereits 2006 bewilligte die Deutsche Forschungsgemeinschaft (DFG) den Sonderforschungsbereich SFB 675 „Erzeugung hochfester metallischer Strukturen und Verbindungen durch gezieltes Einstellen lokaler Eigenschaften“, der sich eingehend mit dieser Thematik befasst. Die Wissenschaftler des SFB 675 der beteiligten Institute der Technischen Universität Clausthal und der Leibniz-Universität Hannover haben sich zum Ziel gesetzt, Werkstoffeigenschaften im Fertigungsprozess lokal derart zu beeinflussen, dass diese, dem Belastungsprofil angepasst, optimiert eingestellt werden können.

Dazu ist die Erarbeitung neuer Lösungsansätze und Methoden erforderlich. Eine umfassende und durchgängige Betrachtung der Prozesskette zur Fertigung hochfester metallischer Strukturen und Verbindungen mit gezielt lokal eingestellten Eigenschaften unter Berücksichtigung der umfangreichen Wechselwirkungen der Teilprozesse steht im Mittelpunkt dieser Forschungskooperation.

In Blechbauteilen lassen sich lokale Festigkeiten verändern

Ein mögliches Konzept zur Einbringung lokaler Festigkeiten in Blechbauteile ist die Nutzung des Effektes der verformungsinduzierten Martensitbildung [1] (Literatur siehe Kastentext). Diese Phasenumwandlung des metastabilen austenitischen Grundwerkstoffs in das martensitische Gefüge basiert auf der Metastabilität des Materials und kann durch Verformungen hervorgerufen werden.

Beeinflussende Effekte sind die Legierungszusammensetzung des Werkstoffes, die Temperatur, der Umformgrad und die Umformgeschwindigkeit. Der Nachweis und die Bestimmung der Gefügeanteile können mittels metallografischer Analysen [2] oder aufgrund der geänderten magnetischen Eigenschaften auch durch Wirbelstromtechnik erfolgen.

Lokale martensitisch hochfeste Zonen im austenitisch-duktilen Grundgefüge

Zur Herstellung belastungsangepasster Bauteile werden in das austenitisch-duktile Grundgefüge des Werkstücks lokal martensitisch hochfeste Zonen eingebracht. Durch den Einsatz von Nebenformelementen während des Tiefziehprozesses von Blechen werden gezielt die lokalen Werkstoffeigenschaften beeinflusst und sogenanntes α’-Martensit erzeugt. Die Auslegung der Stempel und ihrer Anordnung erfolgte auf Basis numerischer und experimenteller Untersuchungen.

Als Beispielbauteil dient in Anlehnung an Geometrien aus der Crashsicherheit (beispielsweise Längs- und Querträger im Automobilbereich) ein Doppel-U-Profil aus dem Werkstoff 1.4301. Durch die Einbringung lokaler martensitischer Verstärkungen konnte bei den Bauteilen gezielt auf das Faltungsverhalten im Crashfall im Fallturm eingewirkt werden.

Es zeigte sich insbesondere eine positive Beeinflussung der Energieaufnahme, des Kraftverlaufes und des Deformationsverlaufes. Im Gegensatz zum Referenzbauteil konnte ein definiertes Knickungsverhalten realisiert werden.

Punktuelle Härtemessung als Kontrolle der veränderten lokalen Festigkeiten

Lokale Festigkeiten am Bauteil sind schlecht messbar. Um örtlich Zugproben aus dem Bauteil herauszuschneiden, fehlt meistens der Platz. Dies ist nur bei großflächigen Bauteilen möglich.

Letztendlich bleibt nur die punktuelle Härtemessung, beispielsweise nach Vickers. Im Karosseriebau von Fahrzeugen werden im Zuge des Leichtbaus zunehmend hochfeste Stähle eingesetzt, wie beispielsweise Mehrphasen- und Restaustenitstähle, die auch im SFB 675 untersucht und lokal verändert werden.

Die Arbeitsgruppe Modellbildung im Rahmen des SFB 675 besteht aus Mitarbeitern der verschiedenen Projekte und hat sich zum Ziel gesetzt, diese Werkstoffe hinsichtlich ihrer Eigenschaften zu charakterisieren und eine Umrechnung von gemessener Härte [HV] am Bauteil in lokale Festigkeit [N/mm2] zu ermöglichen.

Zugproben gehen Härtemessung voraus

Zunächst werden Zugproben nach DIN EN 10002 in den Intervallen 5%, 10%, 15% und 20% mit einer rechnergesteuerten Zugprüfmaschine vorgedehnt. Dabei werden die Zugkraft sowie die Längen- und Breitenänderung der Probe erfasst. An den vorgedehnten Proben wird anschließend die Härte nach Vickers gemessen.

Mit der Härteumwertung nach DIN EN ISO 18265 können Härtewerte [HV] in Festigkeit [N/mm2] umgerechnet werden. Diese Umrechnungsmethode basiert auf Ringversuchen des Vereins Deutscher Eisenhüttenleute (VDEh) für unterschiedliche Stähle.

Allerdings weisen die im Rahmen des SFB 675 verwendeten aktuellen hochfesten Stahlgüten ein von der DIN abweichendes Werkstoffverhalten auf. Hierbei handelt es sich um einen austenitischen Edelstahl 1.4301 und um einen Restaustenitstahl TRIP780.

Härteumwertung nicht mit Spannungen aus dem Zugversuch vergleichbar

Es fällt auf, dass die Härteumwertung nach DIN EN ISO 18265 nicht mit den Spannungen aus dem Zugversuch vergleichbar ist und für diese Stähle nicht anwendbar ist. Die im Zugversuch ermittelten Spannungen sind die technische Spannung, die dem Spannungs-Dehnungs-Diagramm entnommen wurde, und die wahre Spannung, die mit der Fließkurve korreliert. Bei Berechnung der technischen Spannung wird der Ausgangsquerschnitt der Zugprobe vor dem Versuch angesetzt, bei der wahren Spannung der sich über die Zeit verändernde Querschnitt.

Bei beiden vorgestellten Stählen kommt es zur Phasenumwandlung im Gefüge infolge der Umformung, dabei wird ein Teil des Austenits in Martensit umgewandelt. Dies ist neben anderen Verfestigungsmechanismen ein Grund für die Abweichungen zwischen der Härteumwertung nach DIN EN ISO 18265 und der wahren Spannung.

Trendlinien zeigen Zusammenhang zwischen Härte und Festigkeit

Lediglich für den TRIP780 lässt sich auf diese Weise nicht so einfach eine Trendlinie angeben. Dieser Stahl ist durch sein kombiniertes Verhalten von Martensitbildung, Work-Hardening und Bake-Hardening schwer zu beschreiben und soll künftig im SFB 675 näher untersucht werden.

Bedeutung der lokalen Festigkeit für die Gesamtstruktur eines Bauteils

Die lokale Festigkeit eines Bauteils ist für das statische Tragverhalten der Gesamtstruktur von großer Bedeutung. Oftmals ist allerdings eine schwingende Beanspruchung für die Lebensdauer einer Struktur maßgeblich. Um Strukturen aus umgeformtem Feinblech gegen Materialermüdung auszulegen, müssen lokale Umformzustände und Beanspruchungen berücksichtigt werden.

Eine moderne Methode zur Lebensdauerabschätzung ist das örtliche Konzept, mit dem aufgrund von Finite-Elemente-Rechnungen und zyklischen Materialkennwerten die Lebensdauer eines Bauteils unter schwingender Belastung abgeschätzt werden kann. Es werden die zyklischen Eigenschaften eines Werkstoffs mit großem Potenzial für lokale Eigenschaftsänderungen, wie beispielsweise starke Verfestigung durch Umformen, untersucht.

Umformung verbessert auch Schwingfestigkeitseigenschaften

Dabei konnte festgestellt werden, dass Umformung nicht nur die Härte- und quasistatischen Festigkeitskennwerte anhebt, sondern in ähnlichem Maße auch die Schwingfestigkeitseigenschaften verbessert [3]. Für den Stahl 1.4301 wurden Schwingfestigkeitsuntersuchungen mit verschiedenen einachsigen Vorreckungen durchgeführt. Das Vorrecken führt zu einer erheblichen Steigerung der Schwingfestigkeit, die zyklischen Spannungs-Dehnungs-Kurven werden angehoben.

Der positive Einfluss der vorhergehenden Umformung bleibt auch unter zyklischer Beanspruchung erhalten und führt zu einer signifikanten Verbesserung der Lebensdauer des Bauteils an hochbeanspruchten Stellen, ohne dass ein erhöhter Materialeinsatz notwendig wird.

Das Ableiten lokaler Werkstoffeigenschaften aus der Härtemessung ist für die Blechumformung im Rahmen verschiedener Disziplinen des SFB 675 von großer Bedeutung. Am Demonstratorbauteil werden die lokalen Festigkeiten im Bereich tiefgezogener martensitischer Strukturen und in Bereichen eingewalzter Strukturen [4] bestimmt und gezielt eingestellt. Für Sandwichstrukturen [5] ist das Verfahren zur Überprüfung eingebrachter Eigenschaftsprofile in den Deckblechen geeignet.

Dr.-Ing. Sven Hübner ist Leiter der Abteilung Blechumformung am Institut für Umformtechnik und Umformmaschinen (IFUM) der Leibniz-Universität Hannover, im SFB 675 leitet er die Arbeitsgruppe Modellbildung. Autorenteam: Prof. Dr.-Ing. H. Palkowski, Prof. Dr.-Ing. B.-A. Behrens, Prof. Dr.-Ing. Fr.-W. Bach, Prof. Dr.-Ing. V. Wesling, Prof. Dr.-Ing. A. Esderts, K.-M. Rudolph, K. Voges-Schwieger, K. Weilandt, J. Mielke, J. Knigge, T. Hagen, M. Asadi, O. Sokolova, H. Wiche, T. Medhurst und M. Diebel.

Media Contact

Sven Hübner und Andere MM MaschinenMarkt

Alle Nachrichten aus der Kategorie: Maschinenbau

Der Maschinenbau ist einer der führenden Industriezweige Deutschlands. Im Maschinenbau haben sich inzwischen eigenständige Studiengänge wie Produktion und Logistik, Verfahrenstechnik, Fahrzeugtechnik, Fertigungstechnik, Luft- und Raumfahrttechnik und andere etabliert.

Der innovations-report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Automatisierungstechnik, Bewegungstechnik, Antriebstechnik, Energietechnik, Fördertechnik, Kunststofftechnik, Leichtbau, Lagertechnik, Messtechnik, Werkzeugmaschinen, Regelungs- und Steuertechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…

Mikroskopische Ansicht von Blutzellen, die Forschungsergebnisse zu ASXL1-Mutationen darstellen.

ASXL1-Mutation: Der verborgene Auslöser hinter Blutkrebs und Entzündungen

Wissenschaftler zeigen, wie ein mutiertes Gen rote und weiße Blutkörperchen schädigt. LA JOLLA, CA – Wissenschaftler am La Jolla Institute for Immunology (LJI) haben herausgefunden, wie ein mutiertes Gen eine…