Forschende testen erstmalig erfolgreich 3D-Druck im Weltraum

Komponenten für Satelliten und Raumfahrzeuge werden heute kostspielig und ineffektiv von Trägerraketen ins All transportiert.

Ein Forschungsteam der Hochschule München (HM) hat als Weltpremiere mit einem 3D-Drucker in einer Forschungsrakete eine Struktur im offenen Weltraum gedruckt. Die Ergebnisse sind vielversprechend.

Eine Gruppe von Wissenschaftlern und ehemaligen Studierenden der HM hat in einer Forschungsrakete Experimente zur Fertigung von Strukturen im Weltraum durchgeführt. Die gedruckten Proben wurden am Esrange Space Center, nördlich des Polarkreises in Schweden, zurückgeführt und ausgewertet.

Erster automatisierter 3D-Druck unter Weltraumbedingungen

Prof. Dr. Markus Pietras mit einer im Labor gedruckten Leichtbaustruktur, die so auch im Weltraum produzierbar wäre
Foto: Mark Siaulys Pfeiffer

Die Versuche an Bord der 5,60 m langen und 35,5 cm breiten Forschungsrakete wurden in einer Höhe von bis zu 90 km durchgeführt und hatten zum Ziel, aus einem mitgeführten, flüssigen photoreaktiven Harz unter Bedingungen der Schwerelosigkeit und in einem Vakuum mit einem 3D-Drucker Stäbe zu fertigen. Das studentische Team um Prof. Dr. Markus Pietras, Leiter des Masterstudiengangs Luft- und Raumfahrttechnik, und Doktorand Michael Kringer waren sehr zufrieden mit den Ergebnissen: „Keiner wusste, ob unser Konzept vom autonomen 3D-Druck mit flüssigem Druckmaterial unter realen Weltraumbedingungen funktionieren würde. Jeder kennt die Bilder von Flüssigkeiten, die durch die Raumstation als kugelförmige Tropfen schweben. Wir hatten schon Bedenken, dass so etwas auch mit unserem Material passieren könnte. Durch eine Härtung des Druckmaterials mit UV-Licht direkt an der Düse hat es sich während des Druckes jedoch so verhalten wie erhofft und wir konnten damit erfolgreich Stäbe produzieren.

Neue Perspektiven für die Raumfahrt

Die an der HM entwickelte Technologie erzeugt unmittelbar durch die dreidimensionale Bewegung des Druckkopfes neue Komponenten. Das photoreaktive Harz wird aus dem Druckkopf durch eine Düse gedrückt und unter Bestrahlung mit UV-Licht gehärtet. Die Methode ist sehr energieeffizient, da nur LEDs betrieben werden und eine Nachhärtung sogar mit Sonnenlicht erfolgen kann. Auch entsteht dabei nur wenig Abwärme, die im Weltraum kompliziert abgeführt werden muss. Der herkömmliche 3D-Druck, wie er zum Beispiel auf der Internationalen Raumstation durchgeführt wird, benötigt erheblich mehr Energie, denn hier wird thermoplastischer Kunststoff erst geschmolzen, um dann schichtweise aufgetragen und wieder abgekühlt zu werden.

Die zukünftige Anwendung liegt in der Erzeugung großer Strukturen direkt vor Ort, damit der aufwendige Transport von Teilen entfällt. Kringer erläutert die Vorzüge: „Auf Trägerraketen ist der Platz begrenzt. Wichtige Komponenten wie Antennen oder Solargeneratoren müssen daher für den Start sehr kompakt gestaltet und dann im Orbit entfaltet werden. Mit 3D-Druck könnten wir die Strukturen vor Ort so bauen, wie wir sie wirklich haben wollen.“

Vom Labor zum In-Space Manufacturing

Die Fertigung von Strukturen im Weltraum beschäftigt schon allein aus Kostengründen alle Weltraumorganisationen. Nach erfolgreichen Tests mit dem 3D-Druck von komplexen Strukturen und Formen im Labor der HM war der nächste logische Schritt eine Erprobung unter Bedingungen der Schwerelosigkeit. Das Team bewarb sich 2020 erfolgreich beim FlyYourThesis!-Programm der Europäischen Weltraumagentur (ESA). Bei Parabelflügen in einem umgebauten Airbus erprobten sie ihr Verfahren weiter. Mit den Tests in einer Höhenforschungsrakete haben die Forscher nun den Beweis geführt, dass die Technologie auch im Weltraum einsatzfähig ist. Gemeinsam mit der ESA und Industriepartnern wird die Technologie weiter erforscht, und schon über den nächsten Schritt nachgedacht: Ein längerer Einsatz des Druckers auf einem Satelliten in der Erdumlaufbahn. Pietras ist optimistisch: „Abgesehen von den wirtschaftlichen Aspekten wird die Technologie auch die Möglichkeiten zur Erforschung des Weltraums erweitern. Weltraumgestützte Solarenergie oder eine bemannte Marsmission kann ich mir zum Beispiel ohne eine Fertigung vor Ort nicht vorstellen.“

Wissenschaftliche Ansprechpartner:

Prof. Dr. Markus Pietras
E-Mail: markus.pietras@hm.edu

http://www.hm.edu

Media Contact

Ralf Kastner Hochschulkommunikation

Alle Nachrichten aus der Kategorie: Maschinenbau

Der Maschinenbau ist einer der führenden Industriezweige Deutschlands. Im Maschinenbau haben sich inzwischen eigenständige Studiengänge wie Produktion und Logistik, Verfahrenstechnik, Fahrzeugtechnik, Fertigungstechnik, Luft- und Raumfahrttechnik und andere etabliert.

Der innovations-report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Automatisierungstechnik, Bewegungstechnik, Antriebstechnik, Energietechnik, Fördertechnik, Kunststofftechnik, Leichtbau, Lagertechnik, Messtechnik, Werkzeugmaschinen, Regelungs- und Steuertechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Lange angestrebte Messung des exotischen Betazerfalls in Thallium

… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…

Soft Robotics: Keramik mit Feingefühl

Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…

Klimawandel bedroht wichtige Planktongruppen im Meer

Erwärmung und Versauerung der Ozeane stören die marinen Ökosysteme. Planktische Foraminiferen sind winzige Meeresorganismen und von zentraler Bedeutung für den Kohlenstoffkreislauf der Ozeane. Eine aktuelle Studie des Forschungszentrums CEREGE in…