Hochleistungs-Drehspindeln müssen immer schneller drehen

Die Luftfahrtindustrie stellt Spindelhersteller vor besondere Herausforderungen. Bei Neuentwicklungen im militärischen, aber auch im zivilen Sektor spielt der Leichtbau mit neuen Werkstoffen eine große Rolle. Beim Airbus A350 sowie der Boeing 787 nimmt der Gewichtsanteil von Karbonfaserwerkstoffen (800% mehr) und Titan (200% mehr) deutlich zu, während es bei Aluminium einen Rückgang um 20% zu verzeichnen gilt. Diesen Tendenzen gilt es bei der Entwicklung neuer Spindeln für die Luftfahrtindustrie Rechnung zu tragen. So entwickelte die Fischer AG Lösungen und Konzepte für die drei beschriebenen Anwendungsgebiete.

Spindel-Umrichter-Systeme werden benötigt

Die Anforderungen an Spindeln für die Hochleistungszerspanung von Aluminiumlegierungen haben sich in den vergangenen Jahren nicht grundlegend geändert. Beim Schruppen (Volumenfräsen) gilt es, in möglichst kurzer Zeit möglichst viel Aluminium zu zerspanen.

So ist es Stand der Technik, bei Schnittgeschwindigkeiten von 4000 m/min und mehr eine Material Removal Rate (MRR) von bis zu 8 l/min zu erzielen. Dies erfordert Spindeln mit hoher Drehzahl und hoher Leistung.

Der Schlichtvorgang benötigt hohe Drehzahlen, um auch für kleine Werkzeuge, mit denen nur eine begrenzte Leistung in Späne umgesetzt werden kann, ausreichende Schnittgeschwindigkeiten erreichen zu können

Neue Spindelantriebe zielen auf höhere Leistung

Der Mittelpunkt neuer Entwicklungen liegt derzeit auf einer Steigerung der maximal verfügbaren Leistung, also auf einer Optimierung des Schruppprozesses. Dabei wird an einer Maximaldrehzahl von 30000 min-1 festgehalten, weil bei einer gesteigerten Drehzahl die Zuverlässigkeit des Systems leiden könnte und die für das Schlichten zur Verfügung stehenden Drehzahlen ausreichend sind.

Das Optimieren des Schruppprozesses und damit die Steigerung der verfügbaren Leistung sind wirtschaftlich sinnvoller, weil ein verringerter Zeitanteil beim Schruppprozess – bei Zerspanungsraten von über 90% – mehr Potenzial hinsichtlich einer höheren Produktivität bietet. Eine höhere Leistung erfordert es, die Leistung prozessstabil umzusetzen. Das bedeutet, dass der Spindelhersteller zwangsläufig das mechatronische Gesamtsystem (Spindel und Umrichter) betrachten und beherrschen muss.

Neues Spindel-Umrichter-System erhöht die Produktivität

Die Fischer AG hat ein Spindel-Umrichter-System entwickelt, das die beschriebenen Randbedingungen berücksichtigt. Es verschiebt die genannten Grenzen deutlich in Richtung auf mehr Produktivität. Die neu entwickelte Spindel MFW-2320/30 VC HSK-A63 erhielt deshalb einen für diesen Anwendungsfall entwickelten Synchronmotor. Er wird durch den hauseigenen Umrichter angetrieben.

Die entwickelte Spindel hat eine Leistung von 100 kW bei einem Durchmesser von 230 mm und einer Länge von 634 mm. Das Gewicht beträgt 107 kg. Damit konnte die Leistungsdichte gesteigert werden. Im Vergleich zu konventionellen Spindeln konnte der Lagerabstand zwischen der vorderen und hinteren Lagerstelle deutlich reduziert und der Wellenaußendurchmesser erhöht werden. Dies beeinflusst die Strukturdynamik der Spindel positiv und das Fräsen bei größerer Schnitttiefe ist stabiler.

Synchronmotor ermöglicht dynamische Optimierung

Der Einfluss dieser durch Einsatz eines Synchronmotors vollzogenen dynamischen Optimierung schlägt sich bei der Berechnung der Stabilitätskarten für zum Einsatz kommende Werkzeuge nieder. Fräsversuche am WZL in Aachen und am PTW in Darmstadt bestätigten dies.

Bild 1 zeigt das Ergebnis der Berechnung einer Stabilitätskarte für ein Werkzeug mit den folgenden Parametern: Schaftfräser ohne Radius, Wendeplatten aus Karbid, Drallwinkel 20°, Schnittwinkel 11°, Freiwinkel 15° und Vollschnitt.

Daraus lässt sich der optimale Arbeitsbereich der Spindel ermitteln. Dieser liegt zwischen 20 000 und 30 000 min-1, also in dem für Werkzeuge dieser Art typischen Drehzahlbereich. Die dort angegebenen Schnitttiefen sind nicht real, weil bei der Simulation die Systemdämpfung ungenügend genau berücksichtigt wurde. Die Lage der Rattersäcke stimmt hingegen mit der Realität gut überein.

Bei den oben erwähnten Hochschul-Versuchen konnten MRR-Werte bis zu 12 l/min erzielt werden, was einer Steigerung von 50% von der bisher existierenden Obergrenze gleichkommt. Diese Steigerung hat eine beachtliche Verkürzung der Zerspanzeit und damit Erhöhung der Produktivität zur Konsequenz. Bei einem Rohbauteil-Gewicht von 1,5 t und einem gewichtsbezogenen Zerspanungsanteil von nur 70% wäre eine Reduzierung der Zerspanzeit beim Schruppen von 33% erzielbar, setzt man ein ausreichendes Beschleunigungsvermögen der Maschinenachsen voraus.

Titan-Zerspanung erfordert hohes Drehmoment

Im Vergleich zur Aluminium-Zerspanung bestehen für die Titan-Zerspanung konträre Anforderungen an die Spindel. In der konventionellen Titanzerspanung (Schruppen) werden Schnittgeschwindigkeiten von 30 bis 50 m/min gefahren. Weil die Drehzahl somit von untergeordneter Bedeutung ist, rückt vielmehr das verfügbare Drehmoment anstatt der verfügbaren Leistung bei der Spindelauslegung in den Mittelpunkt.

Aus den deutlich niedrigeren Schnittgeschwindigkeiten resultiert ein anderes Beanspruchungsprofil der Spindel: deutlich höhere Prozesskräfte, Mischreibung durch fehlende Drehzahl zum Aufbau eines elasto-hydrodynamischen Schmierfilms in Wälzlagern.

Veränderte Randbedingungen erfordern Weiterentwicklung

Die im Vergleich zur Zerspanung von Aluminiumlegierungen veränderten Randbedingungen (höhere Drehzahlen, verbunden mit dem Siegeszug der HSC-Technik) erforderten es, die Motorspindeln weiterzuentwickeln. Die Drehzahlanforderungen an die Spindeln für die Zerspanung von Ti-Legierungen sind, wie bereits erwähnt, gering.

Darüber hinaus lassen sich durch den Einsatz konventioneller Getriebespindeln Drehmomente bereitstellen, die ausreichend sind. Solche Einheiten befinden sich aber in der Regel in der Systemverantwortung der Maschinenhersteller und werden auch von diesen hergestellt.

Die Aufgabe und zugleich das Dilemma für den Spindelhersteller ist, sich mit Lösungen, die einen Mehrwert bieten, eine Nische auf dem neuen Markt der Titanzerspanung suchen zu müssen. Erfolgreich kann dies nur funktionieren, wenn der Spindelhersteller sein angestammtes Know-how (Motorspindeln) mit den Anforderungen nach hohen Drehmomenten so verknüpft, dass ein Wettbewerbsvorteil gegenüber konventionellen Getriebelösungen erwächst.

Hochpolige Synchronmotoren für die Titanzerspanung geeignet

Eine Möglichkeit ist es zum Beispiel, hochpolige Synchronmotoren zu verwenden. Die Vorteile der direkt angetriebenen Motorspindeln liegen in ihrer Kompaktheit und Fünf-Achs-Fähigkeit sowie in der Einsparung kosten- und oft wartungsbehafteter Getriebekomponenten.

Fischer Precise entwickelt kundenspezifische Lösungen mit Drehmomenten bis 2000 Nm (S1) mit einem Außendruchmesser von 420 mm und einer Länge von 1100 mm, genauso wie 600 Nm mit 275 mm Durchmesser und 700 mm Länge. Um solche Drehmomente zu erzeugen, benötigt man Umrichter, die hohe Ströme bei hohen Taktfrequenzen zulassen. Dies ist wegen der Vielpoligkeit der verwendeten Motoren erforderlich.

Rudolf Walter ist Leiter des technischen Vertriebs bei der Fischer Precise Deutschland GmbH in 70771 Leinfelden-Echterdingen.

Alle Nachrichten aus der Kategorie: Maschinenbau

Der Maschinenbau ist einer der führenden Industriezweige Deutschlands. Im Maschinenbau haben sich inzwischen eigenständige Studiengänge wie Produktion und Logistik, Verfahrenstechnik, Fahrzeugtechnik, Fertigungstechnik, Luft- und Raumfahrttechnik und andere etabliert.

Der innovations-report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Automatisierungstechnik, Bewegungstechnik, Antriebstechnik, Energietechnik, Fördertechnik, Kunststofftechnik, Leichtbau, Lagertechnik, Messtechnik, Werkzeugmaschinen, Regelungs- und Steuertechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-System analysiert subtile Hand- und Gesichtsgesten zur Gebärdenspracherkennung.

Nicht in der Übersetzung verloren: KI erhöht Genauigkeit der Gebärdenspracherkennung

Zusätzliche Daten können helfen, subtile Gesten, Handpositionen und Gesichtsausdrücke zu unterscheiden Die Komplexität der Gebärdensprachen Gebärdensprachen wurden von Nationen weltweit entwickelt, um dem lokalen Kommunikationsstil zu entsprechen, und jede Sprache…

Forscherin Claudia Schmidt analysiert durch Gletscherschmelze beeinflusste Wasserproben arktischer Fjorde.

Brechen des Eises: Gletscherschmelze verändert arktische Fjordökosysteme

Die Regionen der Arktis sind besonders anfällig für den Klimawandel. Es mangelt jedoch an umfassenden wissenschaftlichen Informationen über die dortigen Umweltveränderungen. Forscher des Helmholtz-Zentrums Hereon haben nun an Fjordsystemen anorganische…

Genetische Analyse zeigt neue Risikofaktoren für Depression in verschiedenen Bevölkerungsgruppen

Globale Studie identifiziert Gene für Depressionen in verschiedenen Ethnien

Neue genetische Risikofaktoren für Depression wurden erstmals in allen großen Weltbevölkerungen identifiziert und ermöglichen es Wissenschaftler*innen, das Risiko für Depression unabhängig von der ethnischen Zugehörigkeit vorherzusagen. Die bislang größte und…