Atomare Verschiebungen in Hochentropie-Legierungen untersucht
Hochentropie-Legierungen aus 3d-Metallen haben faszinierende Eigenschaften, die Anwendungen im Energiesektor in Aussicht stellen. Ein internationales Team hat nun lokale Verschiebungen auf atomarer Ebene in einer hochentropischen Cantor-Legierung aus Chrom, Mangan, Eisen, Kobalt und Nickel untersucht. Mit spektroskopischen Analysen an BESSY II und statistischen Simulationen konnten sie das Verständnis dieser Materialgruppe deutlich erweitern.
Hochentropie-Legierungen sind für ganz unterschiedliche Anwendungen als Energiematerialien im Gespräch: Einige Materialien aus dieser Gruppe können Wasserstoff speichern, andere eignen sich für die edelmetallfreie Elektrokatalyse, als Superkondensatoren oder zur Abschirmung von Strahlung.
Die mikroskopische Struktur von hochentropischen Legierungen ist sehr vielfältig und veränderbar: Dabei beeinflussen die lokale Anordnung der Elemente und verschiedene Sekundärphasen die makroskopischen Eigenschaften wie Härte, Korrosionsbeständigkeit und auch Magnetismus. Die sogenannte Cantor-Legierung aus Chrom, Mangan, Eisen, Kobalt und Nickel in einem äquimolaren Verhältnis gilt als geeignetes Modellsystem für die gesamte Klasse dieser Werkstoffe.
Wo sitzen welche Elemente?
Wissenschaftlerinnen und Wissenschaftler der Bundesanstalt für Materialforschung (BAM, Berlin), der Universität von Lettland in Riga, der Ruhr-Universität Bochum und des HZB haben nun die lokale Struktur dieses Modellsystems genauer untersucht. Mit Röntgenabsorptionsspektroskopie (EXAFS) an BESSY II kombiniert mit statistischen Berechnungen und der Reverse-Monte-Carlo-Methode konnten sie jedes einzelne Element und dessen Verschiebungen von den idealen Gitterpositionen für dieses System nahezu unverfälscht verfolgen.
Besonderheiten von Chrom
Auf diese Weise deckten sie Besonderheiten in der lokalen Umgebung jedes Elements auf: Obwohl alle fünf Elemente der Legierung an den Knotenpunkten des flächenzentrierten kubischen Gitters verteilt sind und sehr enge statistisch gemittelte interatomare Abstände (2,54 – 2,55 Å) zu ihren nächsten Nachbarn haben, zeigten sich größere strukturelle Relaxationen nur bei den Chromatomen. Außerdem fanden sich keine Hinweise auf sekundäre Phasen auf atomarer Ebene. Die makroskopischen magnetischen Eigenschaften, die mit konventioneller Magnetometrie am HZB CoreLab für Quantenmaterialien untersucht wurden, konnten mit den Informationen über das Element Chrom korreliert werden.
„Unsere Ergebnisse beschreiben die Anordnung einzelner Atome sehr präzise und zeigen, wie die komplexe magnetische Ordnung entstehen kann“, erklärt HZB-Physikerin Dr. Alevtina Smekhova, die die Experimente am HZB betreut hat.
Wissenschaftliche Ansprechpartner:
Dr. Alevtina Smekhova
Email: alevtina.smekhova at helmholtz-berlin.de
Originalpublikation:
Journal of Alloys and Compounds (2022):
Inner relaxations in equiatomic single-phase high-entropy Cantor alloy
Alevtina Smekhova, Alexei Kuzmin, Konrad Siemensmeyer, Radu Abrudan, Uwe Reinholz, Ana Guilherme Buzanich, Mike Schneider, Guillaume Laplanche, Kirill V. Yusenko
DOI: 10.1016/j.jallcom.2022.165999
https://www.sciencedirect.com/science/article/abs/pii/S0925838822023908?via%3Dih…
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=23855&sprache=de&seitenid=1
Media Contact
Alle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Selen-Proteine: Neuer Ansatzpunkt für die Krebsforschung
Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von Krebs bei Kindern könnte diese…
Pendler-Bike der Zukunft
– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…
Neuartige Methode zur Tumorbekämpfung
Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…