Atomschicht schiebt Stufenkanten weg

Image sequence showing the evolution from the pure iridium surface (left, pink) to the fully borophen-covered surface of the sample (right, yellow-orange).
© UDE/Petrović

Großflächiges 2D-Material hergestellt …

Ellenbogenmentalität bei einem zweidimensionalen Material: Das hat ein internationales Team unter Federführung des Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) kürzlich entdeckt: Den Physikern gelang es, Bor-Schichten entstehen zu lassen, die nur eine Atomschicht hoch sind. Störende Stufenkanten auf der Unterlage schiebt das Material dabei einfach aus dem Weg. Seine Ergebnisse veröffentlichte das Team im Fachmagazin ACS Nano.

Es ist das Ziel des Teams um UDE-Prof. Michael Horn-von Hoegen, das dünnstmögliche Bor, sogenanntes Borophen, herzustellen. Denn es verspricht Eigenschaften, die den Bau zweidimensionaler Transistoren möglich machen könnten. Die hierzu bisher verwendete Methode der Molekularstrahl-Epitaxie führt zu viel zu kleinen Inselchen, für genauere Untersuchungen und den Einsatz in der Technologie sind jedoch größere Flächen nötig.

In ihrer neu entwickelten Methode der „Segregationsgestützten Epitaxie“ nutzen sie gasförmiges Borazin sowie eine Iridium-Unterlage. Die wesentlichen Bestandteile des Borazin sind Bor- und Stickstoffatome, die in regelmäßigen Sechseck-Strukturen angeordnet sind wie Bienenwaben. Erhitzt man die Iridium-Probe in einer Borazin-haltigen Umgebung, so setzen sich dessen Moleküle an der Oberfläche fest, anschließend verdampft der Stickstoff. Ab 1100°C geht das Bor ins Iridium über, denn dieses kann bei so hohen Temperaturen wie ein Schwamm bis zu einem Viertel seines Volumens an Bor-Atomen zusätzlich aufnehmen. Nachdem das System wieder abgekühlt ist, fällt Borophen – die einatomige Lage aus Bor – an der Oberfläche des Iridium-Kristalls aus. Dabei wächst es nicht über Stufenkanten des darunterliegenden Kristalls hinaus, schiebt diese jedoch in alle Richtungen weg, um selbst so große Flächen zu bilden wie möglich.

Nächster Schritt: Ablösung

Dass es sich bei den Flächen ausschließlich um Bor-Atome handelt und der Stickstoff aus der Probe verschwunden ist, konnten Experten des Interdisciplinary Center for Analytics on the Nanoscale (ICAN) unter der Leitung von UDE-Prof. Frank-J. Meyer zu Heringdorf zweifelsfrei nachweisen.

Wie sich das Borophen nun von der Iridium-Unterlage ablösen lässt, das wollen die Forscher in einem nächsten Schritt untersuchen.

Die Veröffentlichung entstand in Zusammenarbeit mit Physikern der Universität zu Köln sowie des Center of Excellence for Advanced Materials and Sensing Devices in Zagreb (Kroatien).

Redaktion: Birte Vierjahn, Tel. 0203/37 9-8176, birte.vierjahn@uni-due.de

Wissenschaftliche Ansprechpartner:

Prof. Dr. Michael Horn- von Hoegen, Experimentalphysik, Tel. 0203/37 9-1438, horn-von-hoegen@uni-due.de

Originalpublikation:

K.M. Omambac, M. Petrović, P. Bampoulis, C. Brand, M.A. Kriegel, P. Dreher, D. Janoschka, U. Hagemann, N. Hartmann, P. Valerius, T. Michely, F.J. Meyer zu Heringdorf, M. Horn-von Hoegen
„Segregation-Enhanced Epitaxy of Borophene on Ir(111) by Thermal Decomposition of Borazine“
ACS Nano, published online March 24, 2021
https://doi.org/10.1021/acsnano.1c00819

https://www.uni-due.de/2021-04-26-grosse-flaeche-borophen-hergestellt

Media Contact

Birte Vierjahn Ressort Presse - Stabsstelle des Rektorats
Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Selen-Proteine …

Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…

Pendler-Bike der Zukunft

– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…

Neuartige Methode zur Tumorbekämpfung

Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…