Nanostrukturiertes Material entdeckt , das elektrische Energie in mechanische Energie direkt umwandelt

Rasterelektronenmikroskop-Aufnahme der Oberflächenstruktur von nanoporösem Platin aus dem Institut für Nanotechnologie des Forschungszentrums Karlsruhe

Muskeln aus Metall für Miniaturroboter oder Kleinprothesen – das ist eine der Visionen, die durch eine Entdeckung des Forschungszentrums Karlsruhe Wirklichkeit werden könnte.

Wissenschaftler entwickelten ein neuartiges nanoporöses Metall, das sich beim Anlegen einer elektrischen Spannung reversibel ausdehnt. So kann elektrische Energie direkt in mechanische Energie umgewandelt werden. Weltweit erstmalig lassen sich damit an einem Metall makroskopisch messbare Längenänderungen durch Anlegen von geringen elektrischen Spannungen hervorrufen. Dank dieses Durchbruchs können verschiedene mikrotechnische Komponenten realisiert werden, die inzwischen zum Patent angemeldet worden sind: Schalter und Regler, direkte Spannungsanzeiger oder andere Sensoren, Aktuatoren sowie – die Umkehrung des Effektes ausnutzend – Bewegungswandler.

In der Edelgaskondensationsanlage im Institut für Nanotechnologie des Forschungszentrums Karlsruhe werden nanostrukturierte Partikel, beispielsweise aus Platin, hergestellt.

Rasterelektronenmikroskop-Aufnahme der Oberflächenstruktur von nanoporösem Platin aus dem Institut für Nanotechnologie des Forschungszentrums Karlsruhe.
Die Zukunft gehört den Nanomaterialien. Durch das extrem hohe Verhältnis von Oberflächen zu gefülltem Raum (Volumen) weisen sie Eigenschaften auf, die von denen unserer Erfahrungswelt stark abweichen. Ein Durchbruch in der Nanowelt ist nun Wissenschaftlern des Forschungszentrums Karlsruhe gelungen.

„Wir haben zunächst nanostrukturiertes Platin hergestellt“, erklärt Dr. Jörg Weissmüller, der dieses Projekt am Institut für Nanotechnologie des Forschungszentrums Karlsruhe leitet. „Dabei wird ein Festkörper aus kleinen Nanopartikeln mit vielen dazwischen liegenden Poren aufgebaut.“ Diese Form des Platins ändert beim Anlegen einer elektrischen Spannung ihre Ausdehnung in einer Stärke, die bisher mögliche Werte bei Metallen um ein Vielfaches übersteigt. Die Längenänderungen sind makroskopisch messbar.

Damit wird eine Vielzahl von Anwendungen möglich, die vorher unerreichbar schienen. So können aus dem nanostrukturierten Platin so genannte Aktuatoren gebaut werden, das sind Bauelemente, die elektrische Arbeit direkt in Bewegung umsetzen. Die Anwendungen reichen von mikroskopischen Ventilen, die entweder von außen oder – abhängig von ihrer Umgebung – auch selbständig geschaltet werden, über adaptive Optiken oder intelligente Materialien, die bei Bedarf ihre Form ändern, bis zu künstlichen Muskeln für Miniaturroboter oder Kleinprothesen.

Weitere Anwendungen sind Dosiereinheiten, Schalter und Regler (etwa zum Öffnen und Schließen eines Stromkreises) oder Messgeräte für Ionen oder elektrische Spannungen.

Der umgekehrte Effekt – die Umwandlung von Beschleunigung in einen Stromimpuls (analog etwa einem Piezokristall) – lässt sich für Bewegungs- oder Kraftsensoren nutzen, wie sie beispielsweise für die Auslösung von Airbags im Auto verwendet werden.

Wissenschaftlicher Hintergrund

Die Experimente, über die in der aktuellen Ausgabe der Zeitschrift „Science“ (11. April 2003) berichtet wird, wurden mit nanostrukturiertem Platin durchgeführt. Reines Platin wird dabei durch Verdampfen und anschließende Kondensation in einer dünnen Edelgasatmosphäre in weniger als 5 Nanometer (Millionstel Millimeter) große Partikel überführt, die durch Pressen zu einem nanoporösen Körper kompaktiert werden. Der entstandene Festkörper wird in eine leitfähige Flüssigkeit, einen so genannten Elektrolyten, getaucht, der die Hohlräume ausfüllt. Durch den Elektrolyten, eine Säure oder Lauge, können elektrische Ladungen zu allen Nanopartikeln des Festkörpers transportiert werden. Anlegen einer elektrischen Spannung verändert die elektrische Ladung des Elektrolyten. Dadurch werden an den Oberflächen der Nanopartikel ebenfalls elektrische Ladungen induziert. Die Atome ändern durch die Ladungsveränderung die Zahl der Elektronen in der Hülle und damit quasi ihre chemische Identität.

Im Prinzip ist der genannte Effekt aus der Halbleiterphysik gut bekannt; dort liegen ähnliche Vorgänge dem Funktionsprinzip von Feldeffekttransistoren zu Grunde, den wichtigsten Bausteinen integrierter Schaltkreise. Das aufregend Neue besteht bei Metallen darin, dass die induzierte Ladung nicht – wie in Halbleitern – über eine vergleichsweise breite Raumladungszone ausschmiert; stattdessen verbleibt die Ladung in einer eng lokalisierten Zone nahe der Oberfläche. Dort ist die Ladungsdichte sehr viel höher als in Halbleitern, so dass die Überschussladung bis zu (plus oder minus) ein Elektron pro Atom betragen kann. Das bedeutet, dass es prinzipiell möglich wird, die Oberflächenatome reversibel in ihrem chemischen Charakter um plus oder minus eine Ordnungszahl im Periodensystem zu verschieben, ein Vorgang, der bisher mit physikalischen Methoden nicht realisiert werden konnte. Da die Elektronenstruktur ausschlaggebend für praktisch alle physikalischen Eigenschaften ist, öffnen sich hiermit ganz neue Wege für Materialien mit reversibel schaltbaren Eigenschaften, zum Beispiel schaltbare magnetische und optische Eigenschaften oder schaltbare Phasengleichgewichte.

In einer ersten Anwendung ist der Effekt bei den Experimenten im Institut für Nanotechnologie dazu eingesetzt worden, die atomaren Bindungsverhältnisse in der Oberfläche zu beeinflussen: Die Oberflächenatome tendieren dann dazu, entweder näher zusammenzurücken oder sich weiter voneinander zu entfernen. Im Gegensatz zu makroskopischen Festkörpern dominieren bei den Nanopartikeln die Oberflächen das Verhalten. Durch die veränderten Atomabstände ändert sich deshalb die Größe der Nanopartikel und somit – da sich alle Partikel in die gleiche Richtung verändern – die Größe des gesamten Festkörpers. Er zieht sich zusammen oder dehnt sich aus. Schon bei relativ kleinen Spannungen (unter einem Volt) können in dem nanoporösen Platin Längenänderungen von bis zu 0,15 % erzielt werden. Damit lassen sich weltweit erstmals an einem Metall makroskopisch messbare Längenänderungen durch Anlegen von geringen elektrischen Spannungen hervorrufen.

Media Contact

Joachim Hoffmann Forschungszentrum Karlsruhe

Weitere Informationen:

http://www.fzk.de

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen

An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…

Tsunami-Frühwarnsystem im Indischen Ozean

20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….

Resistente Bakterien in der Ostsee

Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…