Risse durchbrechen die Schallmauer
Stuttgarter Materialwissenschaftler haben entdeckt, unter welchen Bedingungen sich Risse mit Überschallgeschwindigkeit in spröden Werkstoffen ausbreiten
Glas zerbricht, Stahl reißt, Gummi platzt – es gibt vielerlei Arten, wie Materialien bei Überbeanspruchung versagen können. Doch bis heute sind viele der atomaren Ursachen für Materialversagen noch unbekannt. So werden manche Materialien bei großen Dehnungen weich, andere wiederum hart – ein Phänomen, das man als Hyperelastizität bezeichnet. Wissenschaftler vom Max-Planck-Institut für Metallforschung in Stuttgart und dem IBM Almaden Forschungszentrum in San José, USA, haben jetzt die Dynamik von Rissen in spröden Werkstoffen in umfangreichen Computersimulationen untersucht. Sie berechneten die Bewegung jedes einzelnen Atoms in einem solchen Material auf der Grundlage der Newtonschen Bewegungsgesetze und entdeckten, dass sich Risse sogar mit Überschallgeschwindigkeit ausbreiten können, wenn Hyperelastizität jenen Bereich um die Rissspitze dominiert, der für den Energietransport wichtig ist. Mit Hilfe leistungsfähiger Supercomputer konnten die Wissenschaftler auch ableiten, unter welchen Bedingungen die Dynamik der Rissausbreitung durch Hyperelastizität bestimmt wird – wichtige Erkenntnisse für das Verständnis von Erdbeben oder die Entstehung und Bewegung von Rissen in Flugzeugen oder Raumfahrzeugen (Nature, 13. November 2003). Sie stehen in klarem Widerspruch zur klassischen Theorie, nach der die Geschwindigkeit von elastischen Wellen – in Analogie zur Lichtgeschwindigkeit in der Relativitätstheorie – als Höchstgeschwindigkeit für die Rissausdehnung in Materialien gilt.
Die meisten theoretischen und numerischen Werkzeuge eines Ingenieurs beruhen heute auf der klassischen Physik des Kontinuums. Doch in den letzen Jahrzehnten hat sich immer mehr die Meinung durchgesetzt, dass gerade die Vorgänge auf atomarer Ebene wichtig sind, wenn man verstehen will, wofür bestimmte Materialien geeignet sind – und unter welchen Bedingungen sie versagen. Zudem stellt die fortlaufende Miniaturisierung vieler Technologien neue Herausforderungen: Die Abmessung der dabei verwendeten Werkstoffe hat in vielen Fällen bereits den Nanometerbereich erreicht, in dem die klassische Beschreibung von Festkörpern als Kontinuum immer fraglicher wird. Heute nutzt man deshalb aufwändige Computersimulationen, um herauszufinden, wie sich Materialien in diesen winzigen Dimensionen tatsächlich verhalten. Die Simulationen ergeben „ab-initio“ Informationen über Deformationsmechanismen und das Materialversagen auf Längen- und Zeitskalen, die man in Experimenten nicht erreichen und für die man keine Vorhersagen aus der Kontinuumstheorie treffen kann. Inzwischen kann man bereits das Verhalten von Materialien im Mikrometer-Bereich simulieren, also von einigen Milliarden Atomen. Spätestens in einigen Jahren sollten solche Simulationen nicht nur ein wichtiges Werkzeug für technologische Innovationen in den Materialwissenschaften sein, sondern auch für den Ingenieur zur Routine werden.
Die Wissenschaftler-Gruppe vom Max-Planck-Institut für Metallforschung in Stuttgart und dem IBM Almaden Forschungszentrum in San José, Kalifornien, USA, hat speziell die Dynamik von Rissen in spröden Materialien mit Hilfe riesiger Computersimulationen untersucht. Dabei entdeckten die Forscher einen wichtigen, bislang fehlenden Aspekt in der heutigen Theorie der dynamischen Rissausbreitung: Die Elastizität von Festkörpern hängt von der Intensität ihrer Verformung ab. So werden Metalle weich, Polymere hingegen hart, wenn sie sich durch zunehmende Dehnung dem Zustand des Materialversagens nähern. „Nur für unendlich kleine Deformationen kann man annehmen, dass sich die elastischen Eigenschaften eines Materials nicht ändern und sein Verhalten linear ist,“ sagt dazu Prof. Huajian Gao, Direktor am Max-Planck-Institut für Metallforschung in Stuttgart. „Trotzdem beschreiben viele der heutigen Theorien die Rissausbreitung auf der Grundlage linearer Elastizität und vernachlässigen, wie unterschiedlich sich Materialien bei kleinen oder großen Dehnungen verhalten. Die bisherigen Theorien sind deshalb aus unserer Sicht zu bezweifeln, denn wenn sich ein Riss in einem Werkstück ausbreitet, bricht das Material an der Rissspitze gerade wegen der extrem großen Deformationen in diesem Bereich.“
Die Wissenschaftler zeigen in ihrer Untersuchung, dass auch Hyperelastizität, also die Elastizität bei großen Dehnungen, das Verhalten von Rissen bestimmen kann. Denn während sich Risse ausbreiten, absorbieren und vernichten sie Energie vom umgebenden Material. „Wir haben eine neue charakteristische Längenskala entdeckt, die jenen Bereich um den Riss beschreibt, aus dem Energie transportiert werden muss, damit der Riss seine Ausbreitung fortsetzen kann,“ so Gao. „Bei extrem hohen Spannungen ist diese Längenskala nur einige Dutzend Nanometer groß.“
Diese charakteristische Längenskala ist proportional zur Rissoberflächenenergie und den elastischen Eigenschaften und umgekehrt proportional zum Quadrat der angelegten elastischen Spannung. Im Gegensatz zum bisherigen Verständnis ist kein Energietransport von weiter entfernten Regionen zum Riss notwendig, sondern nur von einem kleinen, lokal begrenzten Bereich, der durch die charakteristische Längenskala beschrieben ist. Abbildung 1 (a) zeigt die Verteilung des Energieflusses in der Nähe des Risses. Die Region umfangreichen Energietransports ist in Rot markiert und definiert die kritische Längenskala für den Energiefluss. Abbildung 1 (b) stellt die Region dar, in dem sich das Material nichtlinear, also hyperelastisch verhält.
Ist die hyperelastische Zone in Abb. 1 (b) ähnlich groß wie der Bereich umfangreichen Energieflusses, versagt die Annahme linearer Elastizität und damit auch die klassische Theorie der Rissausbreitung. Denn in weichen Materialien verläuft der Energietransport langsamer, in harten Materialien schneller. Entsprechend beschleunigt oder verlangsamt sich die Rissgeschwindigkeit bei einem ausreichend großen hyperelastischen Bereich. Ist die Region um den Riss durch Hyperelastizität verhärtet, kann in kürzerer Zeit sehr viel mehr Energie zum Riss transportiert werden. Umgekehrt wird der Energietransport langsamer, wenn der Bereich um die Rissspitze weicher wird. Daher schlussfolgern die Wissenschaftler, dass die Hyperelastizität entscheidend ist, um die Dynamik von Rissen korrekt verstehen und vorhersagen zu können.
Bestimmt Hyperelastizität ihre Dynamik, können Risse sich schneller als alle elastischen Wellen bewegen. Eine Erkenntnis, die in krassen Widerspruch zu klassischen Theorien steht, nach denen die longitudinale Wellengeschwindigkeit eine undurchdringliche obere Grenze für die Rissgeschwindigkeit darstellt. Abbildung 2 zeigt eine Computersimulation, wie sich ein Riss unter Scherbelastung ausbreitet, die Schallmauer durchbricht und mit Überschallgeschwindigkeit (in Glas mit mehr als 5.300 Meter/Sekunde, d.h. mit mehr als 19.000 Stundenkilometer) durch das Material rast. Solche Phänomene können nur unter Berücksichtigung der Hyperelastizität verstanden werden.
Die Hyperelastizität dominiert den Energietransport zur Rissspitze, wenn sich die Größe der hyperelastischen Zone der des kritischen Energieflussbereichs nähert. Unter normalen experimentellen Bedingungen sind die Spannungen eine oder zwei Größenordnungen kleiner als in atomistischen Simulationen. In diesen Fällen ist die charakteristische Länge des Energietransports relativ groß, und der Effekt von Hyperelastizität auf die effektive Geschwindigkeit des Energietransports ist klein. Jetzt haben die Wissenschaftler gezeigt, dass – im Gegensatz dazu – bei nur einem Prozent Dehnung die charakteristische Länge für den Energietransport nur noch einige hundert Atomabstände, also nur einige Dutzend Nanometern groß ist. In diesem Fall treten sofort bedeutende hyperelastische Effekte auf. Von daher vermuten die Forscher, dass Hyperelastizität in nanostrukturierten Materialien wie dünnen Schichten oder bei sehr schnellen Verformungsvorgängen die Rissentwicklung dominiert. Denn in beiden Fällen treten sehr hohe Spannungen auf, so dass die Region, aus der Energie zum Riss fließen muss, relativ klein ist.
Hyperelastizität und ihr Zusammenspiel mit der kritischen Längenskala für den Energietransport kann nur in Computersimulationen von ausreichend großen Materialsystemen beobachtet werden. Dazu sind sehr große Rechnerressourcen erforderlich. Die Stuttgarter Rechnungen wurden an einem der leistungsfähigsten Rechenzentren der Welt, dem Rechenzentrum Garching (RZG) der Max-Planck-Gesellschaft, durchgeführt.
Weitere Informationen erhalten Sie von:
Prof. Huajian Gao
Max-Planck-Institut für Metallforschung, Stuttgart
Tel.: 0711 689-3510, Fax: -3512
E-Mail: hjgao@mf.mpg.de
Media Contact
Alle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…