Hard Science und Haute Cuisine
Molekulargastronomen jonglieren mit Proteinen und Polymeren / Neue MaxPlanckForschung erschienen
Ein Physiker am Mainzer Max-Planck-Institut für Polymerforschung verbindet seine Forschung an Weicher Materie elegant mit Kochen als Wissenschaft. Bei dem „Molekulargastronom“ Thomas A. Vilgis wird deshalb die Küche zum Labor. Die neueste Ausgabe der MaxPlanckForschung (4/2003) hat Vilgis besucht und beschreibt was passiert, wenn „Hard Science“ auf „Haute Cuisine“ trifft.
Warum wird Fleisch durch Garen zart, aber durch zu langes Erhitzen zur zähen Schuhsohle? Was passiert beim Schlagen von Eischnee oder dem Klären von Butter? Mit solchen Fragen zur Chemie und Physik der Braten, Saucen oder Puddings beschäftigen sich Wissenschaftler, die sich „Molekulargastronomen“ nennen. Thomas Vilgis zählt sich zu ihnen. Hauptamtlich erforscht er am Max-Planck-Institut für Polymerforschung in Mainz die Eigenschaften von Polymeren, Biopolymeren und die komplexen Materialien, die diese aufbauen können.
Emulsionen, Suspensionen, Schäume, Gele, biologische Membranen oder Fasern bestehen aus sehr großen Molekülen. Diese Moleküle, oft Polymere, beeinflussen sich gegenseitig über viele Größenskalen hinweg: Sie reichen von Nanometern (milliardstel Meter) bis zu Mikro- oder sogar Millimetern. Das verleiht allen diesen Materialien komplexe und zugleich charakteristische Eigenschaften. Deshalb fassen Wissenschaftler sie heute unter dem Oberbegriff „Weiche Materie“ zusammen, der für ein vielseitiges und sehr dynamisches Forschungsfeld steht. Zur Weichen Materie gehören alle biologischen Materialien – außer den Biomineralien in Knochen und Zähnen – und damit auch alles, was wir essen.
Ein interessanter Zugang zum Kochen ergibt sich zum Beispiel aus der Perspektive der Proteine, also der Eiweiße. Diese Biopolymere sind große Moleküle, die aus Tausenden von Atomen bestehen. In lebenden Organismen spielen sie in praktisch allen biochemischen Prozessen eine zentrale Rolle. Entscheidend ist dabei, dass diese Moleküle ihre Gestalt ändern können – und damit auch ihre biologische Funktionsweise: Manche Proteine können etwa zwischen einer blattartig gefalteten Gestalt und einer schraubenförmigen Helix umschalten. Solche Vorgänge lösen nach heutigem Wissen sogar Gehirnerkrankungen wie BSE aus.
Thomas A. Vilgis und seine Mitarbeiter entwickeln neue mathematische Modelle, um zum Beispiel die Wirkungsweise von Antikörpern und Enzymen besser zu verstehen. Enzyme beschleunigen als Katalysatoren biochemische Reaktionen im Organismus, was viele Lebensfunktionen erst ermöglicht. Bestimmte Enzyme können aber auch beim Kochen helfen, beispielsweise als „Fleischzartmacher“. Damit biologisches Gewebe fest und zugleich elastisch ist, durchziehen es Fasern aus Collagen. Diese Biopolymer-Fasern bestehen aus einer sehr stabilen molekularen Dreifachhelix – was aber das rohe Fleisch zäh macht. Das Erhitzen oder das Einwirken bestimmter Enzyme, zum Beispiel aus dem Saft frischer Ananas oder Feigen, kann das Collagen umwandeln: Die Dreifachhelices lösen sich auf und die Polymere verknüpfen sich zu einem losen räumlichen Netzwerk. Dabei entsteht ein Gel, das Fleisch wird zart.
Die Küche bietet unterschiedliche komplexe Materialien – und damit viel Futter für die wissenschaftliche Neugier von Molekulargastronomen. Hoch interessant sind zum Beispiel Grenzflächen: In Nahrungsmitteln bestehen sie meist aus einer nur wenige Nanometer dünnen Schicht geordneter Proteine. Solche Schichten können zum Beispiel Wasser und Fetttröpfchen miteinander verbinden, die sich sonst abstoßen. Dabei entstehen Emulsionen wie Milch und Butter. Molekulare Grenzflächen verleihen auch den Luftbläschen in Schäumen ausreichend Stabilität. Dazu müssen erst die Proteinmoleküle, die im Eiklar als Knäuel vorliegen, „ausgewickelt“ werden: Das besorgt das Schlagen mit dem Schneebesen. Dabei wird aus dem transparenten Eiklar undurchsichtiges Eiweiß. Die veränderten Proteinmoleküle können nun die Wassermoleküle des Eis in feinen, sandwichartigen Membranen einschließen. Diese Membranen legen sich als stabile Hüllen um die Luftbläschen des Eischaums. Es verblüfft, dass ein so grobes Gerät wie ein Schneebesen die Gestalt von nur wenigen Nanometer kleinen Molekülen verändern kann. Die Nanotechnik hat also in der Küche eine lange Tradition!
Originalveröffentlichung:
N. Lee, T.A. Vilgis
Single chain force spectroscopy – reading the sequence of HP protein models
Eur. Phys. J. B 28, 415 (2002)
N. Lee, T.A. Vilgis
Preferential adsorption of hydrophobic-polar model proteins on patterned surfaces
Phys. Rev E 67, 050901 (2003)
E. Jarkova, N. Lee, T.A. Vilgis
Swelling behavior of responsive amphiphilic gels
Weitere Informationen erhalten Sie von:
Prof. Dr. Thomas A. Vilgis
Max-Planck-Institut für Polymerforschung, D-55021 Mainz
Tel.: +49 6131 379-143
Fax: +49 6131 379-340
E-Mail: vilgis@mpip-mainz.mpg.de
Media Contact
Alle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…