Platin-Nanopartikel "graben" sich in Zeolith-Träger ein und erzeugen dabei neue Poren
Abgas-Katalysatoren von Autos bestehen aus winzigen Platin-Partikeln, die auf einem porösen keramischen Träger aufgebracht sind. Bei hohen Temperaturen können diese Partikel sintern, das heißt mit dem Trägermaterial zusammenschmelzen und chemische Reaktionen eingehen. Was passiert dabei nanoskopisch? Und könnte man diese Vorgänge vielleicht nutzen? Japanische Wissenschaftler um Hitoshi Kato haben Platin-Partikel auf einer Zeolith-Oberfläche genauer unter die Lupe genommen – besser gesagt unter das Elektronenmikroskop – und dabei Erstaunliches entdeckt: Partikel, die Gänge „buddeln“.
Zeolithe sind kristalline, hochporöse Silikate. Auf Grund ihrer hohen Oberfläche und ihrer käfigartigen Poren, in die „Gastmoleküle“ aufgenommen werden können, sind sie als Ionenaustauscher, Molekularsiebe und Katalysatoren im Einsatz. Einen solchen Zeolithen wählten die Forscher als Träger für ihre Platin-Partikel und setzten ihn bei 800°C einer Atmosphäre aus, die einem durchschnittlichen Autoabgas entsprach. Nach hundert Stunden sahen sie sich die kleinen platinhaltigen Zeolithkriställchen unter dem Elektronenmikroskop an. Und oh Wunder: Auf der Zeolith-Oberfläche waren keine Platin-Partikel mehr zu erkennen. Wo konnten sie sein? Der überraschende Befund: Die winzigen Edelmetall-Kügelchen hatten sich regelrecht in die Oberfläche des Zeolithen hinein gegraben. Dabei hinterließen sie kleine Kanäle, die ungefähr dem jeweiligen Durchmesser des Partikels entsprachen. Dabei ist eine Vorzugsrichtung innerhalb der Zeolith-Kriställchen zu verzeichnen. Die Kanäle haben einen sechseckigen Querschnitt, was im Einklang mit der Gitterstruktur des Zeolithen steht, und die Kanalwände werden aus Facetten des Kristalls gebildet. Abgesehen von je einem Platinkügelchen am Ende der Gänge sind diese ansonsten leer und die umliegende Kristallstruktur wird in keiner Wiese gestört. Offenbar sind einfach einige Atome aus dem Kristallgitter entschwunden. An den Berührungsstellen zwischen Platinteilchen und Zeolith katalysiert das Platin vermutlich eine chemische Reaktion zwischen den Silicium- und Sauerstoffatomen des Zeolithen und Bestandteilen der Abgas-Atmosphäre. Dabei können Bestandteile des Zeolithen in Form von SiO und Si(OH)4 aus dem Kristall austreten. Die Platinteilchen „sinken“ immer tiefer in die so entstehenden Löcher ein.
„Das beobachtete Phänomen könnte genutzt werden, um maßgeschneiderte poröse Materialien herzustellen,“ hofft Kato. „Die Porenanzahl, -form und -größe ließen sich über die Anzahl und den Durchmesser der Platinpartikel, die Dauer des Erhitzens, den gewählten Zeolith-Typus und die Orientierung der Kriställchen einstellen.“
Kontakt:
Hitoshi Kato
Materials Research and Development Laboratory
Japan Fine Ceramics Center
2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan
Fax: (+81) 52-871-3599
E-mail: hkato@jfcc.or.jp
Angewandte Chemie
Postfach 101161 , D-69451 Weinheim
Tel.: 06201/606 321, Fax: -331
E-Mail: angewandte@wiley-vch.de
Media Contact
Weitere Informationen:
http://www.angewandte.orgAlle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…