Superelastische Polymere

Was geschieht, wenn man einen etwa zehn Zentimeter großen Luftballon auf über einen Meter Durchmesser aufbläst? Richtig: Ein gewöhnlicher Luftballon würde das gar nicht mitmachen. Er würde schlichtweg zerplatzen. Doch die Kunststoffe, die Prof. Dr. Roland Weidisch am Institut für Materialwissenschaft und Werkstofftechnologie (IMT) der Friedrich-Schiller-Universität Jena entwickelt, sind so elastisch, dass sie sich bis weit über das Zehnfache ihrer ursprünglichen Größe ausdehnen lassen. „Doch nicht nur das“, betont Prof. Weidisch, der neu berufener Professor für Mechanik der funktionellen Materialien an der Jenaer Universität ist. „Nach einer Belastung bis 1 000 Prozent nehmen diese Materialien ihre anfängliche Form komplett wieder an.“

Das Geheimnis dieser superelastischen Polymere ist ihre molekulare Struktur. Wie andere gängige Kunststoffe, z. B. Polystyrol (PS) oder Polyvinylchlorid (PVC), bestehen sie aus langen Ketten verknüpfter Einzelbausteine. „Doch im Gegensatz zu PS und kommerziellen Elastomeren weisen die superelastischen Materialien eine elastische Grundkette mit zusätzlichen komplexen Verzweigungen z. B. aus PS auf“, erklärt Prof. Weidisch. „Diese geben dem Material sowohl Festigkeit als auch eine hohe Elastizität.“ Prof. Weidisch und sein Team untersuchen nun, wie sich diese spezielle chemische und physikalische Struktur auf die mechanischen Eigenschaften der neuen Kunststoffe auswirkt und wie diese Eigenschaften mit Modellen beschrieben werden können.

„Dabei haben wir natürlich auch potenzielle Einsatzgebiete solcher Materialien im Blick“, erläutert der 41-Jährige. Und die liegen natürlich nicht in erster Linie im Bereich von Luftballons. „Doch für medizinische Artikel, wie elastische Membranen, sind diese Kunststoffe ebenso geeignet, wie für den Einsatz im Fahrzeugbau oder in der Akustik“, erklärt der Ingenieur, der an der Technischen Hochschule Merseburg Polymerwerkstofftechnik studiert hat. Für Anwendungen als Membranen in der Akustik ist die erste Testphase bereits erfolgreich verlaufen.

Nach dem Studium war Weidisch zunächst als wissenschaftlicher Assistent an der TH Merseburg tätig, bevor er 1994 als Doktorand an das Institut für Werkstoffwissenschaft der Universität Halle/Wittenberg wechselte. Nach seiner 1997 abgeschlossenen Promotion erhielt Roland Weidisch ein Forschungsstipendium und wechselte ans Max-Planck-Institut für Polymerforschung (MPIP) nach Mainz. Von 1999 bis 2000 war er als Gastwissenschaftler zunächst an der University of Massachusetts in Amherst, später auch an der Cornell-University im US-Bundesstaat New York tätig. Anschließend kehrte er an die Universität Halle/Wittenberg zurück, wo er 2002 am Fachbereich Ingenieurwissenschaften seine Habilitation abschloss. Ein Heisenberg-Stipendium der Deutschen Forschungsgemeinschaft ermöglichte es Roland Weidisch als Arbeitsgruppenleiter an das Leibniz-Institut für Polymerforschung in Dresden zu gehen, wo seine Entwicklung der superelastischen Polymere bereits mit dem Innovationspreis ausgezeichnet wurde. Nach drei Jahren dort, folgte der verheiratete Vater einer Tochter dem Ruf an die Friedrich-Schiller-Universität Jena.

Kontakt:
Prof. Dr. Roland Weidisch
Institut für Materialwissenschaft und Werkstofftechnologie der Friedrich-Schiller-Universität Jena
Löbdergraben 32, 07743 Jena
Tel.: 03641 / 947770
Fax: 03641 / 947702
E-Mail: Roland.Weidisch[at]uni-jena.de

Media Contact

Dr. Ute Schönfelder idw

Weitere Informationen:

http://www.uni-jena.de/

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…