Biologisch abbaubare künstliche Muskeln

Ein Greifarm aus Biopolyester
(c) MPI-IS

Forschende im Bereich Soft-Robotik setzen auf Nachhaltigkeit.

Wissenschaftler*innen des Max-Planck-Instituts für Intelligente Systeme in Stuttgart, der Johannes Kepler Universität in Linz (Österreich) und der University of Colorado in Boulder (USA) haben vollständig biologisch abbaubare, leistungsstarke künstliche Muskeln entwickelt. Ihr Forschungsprojekt ist ein wichtiger Schritt hin zu mehr Nachhaltigkeit im Bereich der Soft-Robotik.

Künstliche Muskeln sind eine Zukunftstechnologie, die es Robotern eines Tages ermöglichen könnte, wie lebende Organismen zu funktionieren. Künstliche Muskeln eröffnen viele neue Möglichkeiten, wie Roboter die Welt um uns herum positiv beeinflussen: von Geräten, die wir wie Kleidungsstücke anziehen und uns im Alltag unterstützen oder im Alter mobiler machen, bis hin zu Rettungsrobotern, die auf der Suche nach Vermissten durch Trümmer navigieren. Wie vielseitig die Roboter der Zukunft sein werden, beeinflussen die künstlichen Muskeln, aus denen sie gebaut sind – das heißt aber noch lange nicht, dass sie auch einen großen Einfluss auf die Umwelt haben müssen.

Bild vergrößern…
Ein Roboter-Greifarm, der recyclebar ist
(c) MPI-IS

Das Thema Nachhaltigkeit rückt auch in der Soft-Robotik immer mehr in den Fokus. Wissenschaftler*innen des Max-Planck-Instituts für Intelligente Systeme (MPI-IS) in Stuttgart, der Johannes-Kepler-Universität (JKU) in Linz (Österreich) und der University of Colorado (CU Boulder) in Boulder (USA) haben einen vollständig biologisch abbaubaren, hochleistungsfähigen künstlichen Muskel entwickelt, der aus Gelatine, Öl und Biokunststoff besteht. Das Team zeigt in einer Forschungsarbeit, wie sie einen Greifarm mit mehreren solcher künstlichen Muskeln ausgestattet haben. Ein Video gibt es dazu auf Youtube. Sind die Muskeln irgendwann beschädigt oder funktionieren nicht mehr richtig, können diese in der Biotonne entsorgt werden. Unter kontrollierten Bedingungen bauen sich die künstlichen Muskeln innerhalb von sechs Monaten vollständig ab.

„Wir sehen einen dringenden Bedarf an nachhaltigen Materialien im Bereich der Soft-Robotik. Biologisch abbaubare Komponenten bieten eine nachhaltige Lösung, insbesondere für Einweganwendungen bei medizinischen Behandlungen, für Such- und Rettungseinsätze und beim Umgang mit gefährlichen Substanzen. Anstatt am Ende der Produktlebensdauer auf Mülldeponien zu landen, enden die Roboter der Zukunft auf dem Kompost“, sagt Ellen Rumley. Sie ist Gast-Wissenschaftlerin der CU Boulder und forscht in der Abteilung für Robotik-Materialien am MPI-IS in Stuttgart. Rumley ist Co-Erstautorin des Artikels „Biodegradable electrohydraulic actuators for sustainable soft robots“, eine Publikation, die am 22. März 2023 in Science Advances veröffentlicht wird.

Das Forscher*innenteam hat einen elektrisch angetriebenen künstlichen Muskel namens HASEL entwickelt. Bei HASELs handelt es sich um mit Öl gefüllte Kunststoffbeutel, die auf beiden Seiten des Beutels mit Elektroden ausgestattet sind. Wenn eine Hochspannung zwischen den Elektroden angelegt wird, bewirken die elektrostatischen Kräfte, dass sich das Pflanzenöl im Inneren des Beutels verschiebt. Indem das Öl hin- und hergeschoben wird, zieht sich der Beutel zusammen – ähnlich wie ein echter Muskel. Wichtigste Voraussetzung, dass die Verformung der HASELs klappt, ist, dass alle Materialien den hohen elektrischen Spannungen standhalten können.

Die erste Herausforderung bestand darin, eine leitfähige, weiche und vollständig biologisch abbaubare Elektrode zu entwickeln. Die Forscher*innen der Johannes Kepler Universität entwickelten diese aus einer Mischung aus Gelatine und Salzen. „Für uns war es wichtig, Elektroden zu entwickeln, die einer Hochspannung standhalten und gleichzeitig aus natürlichen Komponenten bestehen. Da unsere biologisch abbaubaren Muskeln leicht in verschiedene Systeme integriert werden können, sind sie ein idealer Baustein für zukünftige biologisch abbaubare Roboter“, erklärt David Preninger. Er ist zusammen mit Ellen Rumley Co-Erstautor des Projekts und an der JKU Wissenschaftler der Abteilung Physik der weichen Materie des Instituts für Experimentalphysik.

Im nächsten Schritt suchten die Forschenden nach geeigneten biologisch abbaubaren Kunststoffen. Es ging den Ingenieur*innen vor allem darum, wie schnell sie sich biologisch abbauen oder wie fest sie sind, weniger aber um die elektrische Leitfähigkeit – obwohl durch HASELs mehrere tausend Volt fließen. Einige Biokunststoffe zeigten eine gute Materialverträglichkeit mit den aus Gelatine bestehenden Elektroden und wiesen eine hohe Leitfähigkeit auf. Die HASELs konnten sich bis zu 100.000 Mal zusammenziehen und wieder entfalten bei mehreren tausend Volt ohne dabei kaputt zu gehen oder an Leitfähigkeit einzubüßen. Die Performance der biologisch abbaubaren künstlichen Muskeln ist damit so hoch wie die von HASELs, die aus nicht biologisch abbaubaren Materialien bestehen; ein wichtiger Schritt hin zu mehr Nachhaltigkeit im Bereich der Soft-Robotik.

„Indem wir die herausragende Leistung dieser neuen Materialien zeigen, bieten wir anderen Forschenden einen Anreiz, biologisch abbaubare Materialien für den Bau von Robotern in Betracht zu ziehen“, so Ellen Rumley weiter. „Die Tatsache, dass wir mit Biokunststoffen so gute Ergebnisse erzielt haben, motiviert hoffentlich auch andere Materialwissenschaftler*innen, nachhaltig zu denken.“

Das Forschungsprojekt des Teams ist ein wichtiger Schritt auf dem Weg zu einem Paradigmenwechsel in der Soft-Robotik. Auch hier gewinnen grüne Technologien immer mehr an Bedeutung. Die Verwendung biologisch abbaubarer Materialien für den Bau künstlicher Muskeln ist ein wichtiger Schritt hin zu nachhaltigeren Robotern.

Science Advances Publikation “Biodegradable electrohydraulic actuators for sustainable soft robots” (DOI: 10.1126/sciadv.adf5551):
Ellen H. Rumley, David Preninger, Alona Shagan Shomron, Philipp Rothemund, Florian Hartmann, Melanie Baumgartner, Nicholas Kellaris, Andreas Stojanovic, Zachary Yoder, Benjamin Karrer, Christoph Keplinger und Martin Kaltenbrunner.

Wissenschaftliche Ansprechpartner:

Ellen Rumley
rumley@is.mpg.de

Originalpublikation:

Science Advances Publikation “Biodegradable electrohydraulic actuators for sustainable soft robots” (DOI: 10.1126/sciadv.adf5551):
Ellen H. Rumley, David Preninger, Alona Shagan Shomron, Philipp Rothemund, Florian Hartmann, Melanie Baumgartner, Nicholas Kellaris, Andreas Stojanovic, Zachary Yoder, Benjamin Karrer, Christoph Keplinger und Martin Kaltenbrunner.

Weitere Informationen:

http://www.is.mpg.de/news

Media Contact

Linda Behringer Public Relations
Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…