Das Bitumen-Puzzle
Obwohl die Geschichte des Bitumens bis ins dritte Jahrtausend v. Chr. zurückreicht, ist über seine Oberflächenstruktur nur wenig bekannt. Forschende der TU Wien klären die Beschaffenheit der Bitumenoberfläche nun mit physikochemischen Analysen auf.
Während in der Vergangenheit bereits Rasterkraft- und Rasterelektronenmikroskopie Aufschluss über die Morphologie von Bitumenoberflächen lieferten, war lange Zeit nicht bekannt, ob Oberflächen- und chemische Beschaffenheit miteinander korrelieren. Die chemische Zusammensetzung der Oberfläche ist jedoch von besonderem Interesse, da dort Oxidationsprozesse ablaufen, ausgelöst durch in der Luft enthaltene sauerstoffhaltige Moleküle wie Ozon, Stickoxide oder Hydroxyl-Radikale. Der Oxidationsprozess beschleunigt die Alterung des Materials – das Bitumen wird porös und es bilden sich Schäden aus.
Die Materialchemiker_innen Dr. Ayse Koyun und Prof. Hinrich Grothe von der TU Wien untersuchten daher die Bitumenoberfläche mit verschiedenen physikochemischen Analysemethoden und verglichen die jeweiligen Ergebnisse miteinander. Die Forschenden publizierten die Daten am 29. Juni in der Fachzeitschrift Scientific Reports.
Ein vielfältiges Material
Bitumen wird aus Erdöl gewonnen und primär für die Herstellung von Asphalt verwendet. Seine Konsistenz hängt maßgeblich von der Temperatur ab – bei heißen Temperaturen ist es zähflüssig und größere chemische Verbindungen wie Aliphate, Erdölharze und Asphaltene bewegen sich frei in der Masse. Kühlt das Bitumen jedoch ab, erstarrt das Material und die einzelnen Moleküle ordnen sich charakteristisch an. Analysen konnten bereits zeigen, dass sich sogenannte Kern-Schale-Partikel an der Oberfläche ausbilden. Das sind Komposite, die aus mindestens zwei verschiedenen Komponenten bestehen.
Da Asphalt und Bitumen im Straßenbau wie auch für Abdichtungsarbeiten eingesetzt werden, ist eine möglichst lange Produktlebensdauer erstrebenswert. Um die Alterung des Materials zu verlangsamen, gilt es Reaktionen ausgelöst von reaktiven Gasen, Licht und Wärme zu minimieren. „Wenn wir das Oxidationsverhalten von Bitumen besser verstehen, können wir nach geeigneten Maßnahmen suchen, um die atmosphärische Alterung zu verhindern. Die Lebensdauer eines Bitumen-Produkts kann so um viele Jahre verlängert werden, was Energie und materielle Ressourcen spart“, erklärt Koyun. In einer in Colloids and Surfaces A: Physicochemical and Engineering Aspects publizierten Studie konnte sie bereits zeigen, wie sich die chemische Zusammensetzung von Bitumen auf seinen Alterungsprozess auswirkt.
Methodenmix liefert neue Infos
In enger Zusammenarbeit mit der Harvard University, der Bruker Nano-Surfaces Division sowie der IONTOF GmbH untersuchte Ayse Koyun, Erstautorin der Studie, die Bitumenoberfläche mit drei verschiedenen Methoden: nanoskalige Infrarotspektroskopie auf Basis photothermischer Expansion (AFM-IR), Flugzeit-Sekundärionen-Massenspektrometrie (ToF-SIMS) und Fluoreszenzmikroskopie. In Kombination liefern diese Methoden wertvolle Einblicke in die mehrphasige Natur der Bitumenoberfläche. „Die Auflösung herkömmlicher Messmethoden, die zur Untersuchung der Oberflächenbeschaffenheit eingesetzt werden, sind für die chemische Charakterisierung zu gering. Einzelne Domänen der Oberfläche lassen sich so nicht bestimmen“, erklärt Koyun. „Durch die Kombination verschiedener physikochemischer Methoden gelingt es uns jedoch, die Struktur bis auf zehn Nanometer genau abzubilden.“ Das Ergebnis: Die Oberfläche ist heterogen. Die Ergebnisse mikroskopischer und spektroskopischer Methoden korrelieren und lassen sich schlüssig interpretieren.
Ein Gesamtbild entsteht
„Bitumen war für uns Materialchemiker_innen lange Zeit wie ein ungelöstes Puzzle“, zieht Hinrich Grothe, Leiter der Forschungsgruppe Physikalische Chemie der Atmosphäre, seinen Vergleich. „Wir kennen viele Details, die sich bislang aber nicht zu einem Gesamtbild haben zusammenfügen lassen. Die Kombination mehrerer physikochemischer Methoden, wie wir sie angewendet haben, konnte uns aber schlussendlich zeigen, wie sich die einzelnen Molekülverbünde im Bitumen verteilen.“ „So konnten wir das Puzzle lösen und das Wissen über Bitumen vervollständigen“, ergänzt Ayse Koyun, die im Rahmen eines Marshall-Stipendiums und mit Unterstützung der TU Wien zwei Forschungsaufenthalte an der Harvard University absolviert.
Wissenschaftliche Ansprechpartner:
Dr. Ayse N. Koyun
Institut für Materialchemie
Technische Universität Wien
+43 1 58801 165123
ayse.koyun@tuwien.ac.at
Univ.Prof. Hinrich Grothe
Institut für Materialchemie
Technische Universität Wien
+43 1 58801 165122
hinrich.grothe@tuwien.ac.at
Originalpublikation:
N. Koyun et al., Scientific Reports, 11, 13554 (2021) https://www.nature.com/articles/s41598-021-92835-3
N. Koyun et al., Colloids and Surfaces A: Physicochemical and Engineering Aspects, 624 (2021) 126856 https://www.sciencedirect.com/science/article/pii/S0927775721007251?via%3Dihub
Media Contact
Alle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Lange angestrebte Messung des exotischen Betazerfalls in Thallium
… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…
Soft Robotics: Keramik mit Feingefühl
Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…
Klimawandel bedroht wichtige Planktongruppen im Meer
Erwärmung und Versauerung der Ozeane stören die marinen Ökosysteme. Planktische Foraminiferen sind winzige Meeresorganismen und von zentraler Bedeutung für den Kohlenstoffkreislauf der Ozeane. Eine aktuelle Studie des Forschungszentrums CEREGE in…