Die steifsten Leichtbaumaterialien überhaupt
3D-Druck und andere additive Fertigungsverfahren ermöglichen es, Materialien mit bisher ungeahnt komplexen inneren Strukturen herzustellen. Interessant ist dies auch für die Leichtbauweise.
Denn es lassen sich so Materialen entwickeln mit einem möglichst grossen Anteil an inneren Hohlräumen (damit die Materialien möglichst leicht werden), und die gleichzeitig möglichst stabil sind. Um dies zu erreichen, müssen die inneren Strukturen auf intelligente Art möglichst effizient aufgebaut sein.
Forschende der ETH Zürich und des MIT unter der Leitung von Dirk Mohr, Professor für numerische Materialmodellierung in der Fertigung, haben nun neue innere Strukturen für Materialien entwickelt, welche Kräfte aus nicht nur einer Richtung, sondern aus allen drei Dimensionen aufnehmen müssen, und die gleichzeitig extrem steif sind.
Mathematisch lässt sich ermitteln, wie steif Materialien mit inneren Hohlräumen theoretisch überhaupt werden können. Und so lässt sich auch zeigen, dass Mohrs neue Konstruktionsweise extrem nahe an diese theoretische Steifigkeitsobergrenze kommt. Mit anderen Worten: Es ist praktisch unmöglich, andere Materialstrukturen zu entwickeln, die bei gegebenem Gewicht noch steifer sind.
Platten statt Gitter
Charakteristisch für die neue Konstruktionsweise ist, dass die Steifigkeit im Materialinnern nicht mit Gitterstäben, sondern mit sich regelmässig wiederholenden Plattenstrukturen erreicht wird.
«Das Gitterprinzip ist sehr alt, es wird schon lange bei Fachwerkhäusern, bei Stahlbrücken und Stahltürmen wie dem Eiffelturm angewandt. Man kann durch Gitterstrukturen hindurchsehen. Diese werden daher häufig als optimale Leichtbaustrukturen wahrgenommen», sagt ETH-Professor Mohr.
«Mit Computerberechnungen und experimentellen Messungen konnten wir nun jedoch zeigen, dass Plattenstrukturen bei gleichem Gewicht und Volumen bis zu dreimal steifer sind als Gitterstrukturen.» Und nebst der Steifigkeit (Widerstand gegen elastische Verformung) kommt auch die Festigkeit (Widerstand gegen irreversible Verformung) dieser Strukturen den theoretischen Maximalwerten sehr nahe.
Die ETH-Wissenschaftler haben die Strukturen zunächst am Computer entwickelt und dabei ihre Eigenschaften berechnet. Anschliessend stellten sie sie im 3D-Druck im Mikrometermassstab aus Kunststoff her. Mohr betont jedoch, dass die Vorteile dieser Konstruktionsweise universell gälten: bei allen Materialien und auch auf allen Grössenskalen vom Nanometermassstab bis ganz gross.
Der Zeit voraus
Mit den neuen Strukturen sind Mohr und sein Team ihrer Zeit voraus: Die Herstellung im 3D-Druck ist derzeit noch verhältnismässig teuer. «Stellt man solche Strukturen heute additiv aus Edelstahl her, kosten sie pro Gramm so viel wie Silber», sagt Mohr. «Sobald additive Fertigungstechnologien für die Massenproduktion bereit sind, wird es jedoch zum Durchbruch kommen.
Den Leichtbau, der heute aus Kostengründen praktisch nur im Flugzeugbau und in der Raumfahrt zur Anwendung kommt, könnte man dann auch für ein breites Spektrum von Anwendungen nutzen, bei denen Gewicht eine Rolle spielt.» Ausserdem machen die vielen Hohlräume eine Struktur nicht nur leichter, sondern es lassen sich damit auch Rohstoffe und folglich Rohstoffkosten sparen.
Möglichen Anwendungen seien kaum Grenzen gesetzt, sagt Mohr. Medizinische Implantate, Laptopgehäuse und ultraleichte Fahrzeugstrukturen sind nur drei von vielen möglichen Beispielen. «Wenn die Zeit reif ist und Leichtbaumaterialien dereinst im grossen Massstab hergestellt werden, wird man dafür diese periodischen Plattenstrukturen verwenden», ist der ETH-Professor überzeugt.
Tancogne-Dejean T, Diamantopoulou M, Gorji MB, Bonatti C, Mohr D: 3D Plate-Lattices: An Emerging Class of Low-Density Metamaterial Exhibiting Optimal Isotropic Stiffness. Advanced Materials 2018, 30: 1803334, doi: 10.1002/adma.201803334 [http://dx.doi.org/10.1002/adma.201803334]
https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2018/12/steifste-l…
Media Contact
Alle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Menschen vs Maschinen – Wer ist besser in der Spracherkennung?
Sind Menschen oder Maschinen besser in der Spracherkennung? Eine neue Studie zeigt, dass aktuelle automatische Spracherkennungssysteme (ASR) unter lauten Bedingungen eine bemerkenswerte Genauigkeit erreichen und manchmal sogar die menschliche Leistung…
Nicht in der Übersetzung verloren: KI erhöht Genauigkeit der Gebärdenspracherkennung
Zusätzliche Daten können helfen, subtile Gesten, Handpositionen und Gesichtsausdrücke zu unterscheiden Die Komplexität der Gebärdensprachen Gebärdensprachen wurden von Nationen weltweit entwickelt, um dem lokalen Kommunikationsstil zu entsprechen, und jede Sprache…
Brechen des Eises: Gletscherschmelze verändert arktische Fjordökosysteme
Die Regionen der Arktis sind besonders anfällig für den Klimawandel. Es mangelt jedoch an umfassenden wissenschaftlichen Informationen über die dortigen Umweltveränderungen. Forscher des Helmholtz-Zentrums Hereon haben nun an Fjordsystemen anorganische…