Ein alternativer Ansatz zur Untersuchung intrinsischer Eigenschaften von Festkörpermaterialien
Unter diesen Materialien befindet sich TaGeIr mit der Kristallstruktur vom MgAgAs-Typ. Um den Ursprung der widersprüchlichen Berichte zu TaGeIr verstehen zu können, untersuchten Wissenschaftler am MPI CPfS und der Northwestern University Abweichungen der Kristallstruktur vom idealen MgAgAs-Modell, die Möglichkeit einer non-stöchiometrischen Zusammensetzung (d.h. das Auftreten eines Homogenitäts-Bereichs), den Einfluss der Synthese-Route auf die Realstruktur, sowie metallographische Eigenschaften.
Als ein Ergebnis dieser umfassenden Studie wurde gezeigt, dass die Anwesenheit von weiteren Phasen mit geringem Anteil, die aufgrund der Phasengleichgewichte im ternären System und der selbst nach langen Hitzebehandlung unvollständigen Homogenisierung auftreten, zu extrinsischem metallischem Verhalten sowie zum Auftreten von Supraleitung bei tiefen Temperaturen führt.
Um die intrinsischen Eigenschaften von TaGeIr ermitteln zu können, wurden mikroskopische Proben hergestellt (Abb. 1), wodurch die Halbleiter-Eigenschaften von TaGeIr schlüssig nachgewiesen werden konnten.
Das dabei beobachtete Verhalten ist im Einklang mit Berechnungen der elektronischen Bandstruktur, in denen nur dann eine Energielücke auftritt, wenn Iridium-Atome in der MgAgAs-Struktur die heterokubische Lage besetzen (Abb. 2).
Diese atomare Anordnung wurde in Beugungsexperimenten an Einkristallen bestätigt. Die Größe der Bandlücke wird durch die Mischbesetzung der Ta- und Ge-Positionen beeinflusst.
Das Max-Planck-Institut für Chemische Physik fester Stoffe (MPI CPfS) in Dresden forscht mit dem Ziel, neue Materialien mit ungewöhnlichen Eigenschaften zu entdecken und zu verstehen.
Chemiker und Physiker, Synthetiker, Experimentatoren und Theoretiker untersuchen gemeinsam, wie sich die chemische Zusammensetzung, die Anordnung der Atome sowie äußere Kräfte auf die magnetischen, elektronischen und chemischen Eigenschaften der Verbindungen auswirken. Dazu wenden sie die modernsten Instrumente und Methoden an.
Neue Quantenmaterialien, -effekte und Materialien für Energieumwandlung sind das Ergebnis dieser interdisziplinären Zusammenarbeit.
Das MPI CPfS ( www.cpfs.mpg.de ) ist Teil der Max-Planck-Gesellschaft und wurde 1995 in Dresden gegründet. Es beschäftigt rund 280 Mitarbeiterinnen und Mitarbeiter, davon etwa 180 Wissenschaftlerinnen und Wissenschaftler inklusive 70 Promovierende.
Juri Grin
Iryna Antonyshyn, Frank R. Wagner, Matej Bobnar, Olga Sichevych, Ulrich Burkhardt, Marcus Schmidt, Markus König, Kenneth Poeppelmeier, Andrew Mackenzie, Eteri Svanidze, Yuri Grin, Micro-scale device – an alternative route for studying the intrinsic properties of solid-state materials: case of semiconducting TaGeIr, Angew. Chem. Int. Ed., accepted, DOI: 10.1002/anie.202002693
Media Contact
Alle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Sensoren für „Ladezustand“ biologischer Zellen
Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…
Organoide, Innovation und Hoffnung
Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…
Leuchtende Zellkerne geben Schlüsselgene preis
Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…