EU-Forschungsnetzwerk will Erzeugung von Nanostrukturen mit fein fokussierten Ionenstrahlen voranbringen

Kieselalge unter dem Helium-Ionenmikroskop des HZDR
HZDR

Der fein fokussierte Ionenstrahl (Focused Ion Beam, FIB) ist ein sehr nützliches Werkzeug in der Nanotechnologie und in der Analytik. Wissenschaftler*innen nutzten die FIB-Technologie bisher vor allem, um Proben für bestimmte Mikroskopie-Techniken zu präparieren, etwa bei der Fehlersuche in der Halbleiterindustrie. Doch FIBs können viel mehr. Das vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) initiierte EU-Netzwerkprojekt „Fokussierte Ionentechnologie für Nanomaterialien – FIT4NANO“ will Forscher*innen und Unternehmen aus ganz Europa zusammenbringen, um die Technologie gemeinsam weiterzuentwickeln und neue Anwendungen zu erschließen.

Eine Ionenfeinstrahlanlage ähnelt einem Rasterelektronenmikroskop, nur nutzen die Wissenschaftler*innen in diesem Fall Ionen anstelle der Elektronen. Charakteristisch für FIBs im niedrigen Energiebereich von unter 50 Kiloelektronenvolt sind der geringe Strahldurchmesser im Nano- und Subnanometer-Bereich, eine hohe Stromdichte sowie eine vielfältige Auswahl an nutzbaren Ionen. „Aufgrund dieser Eigenschaften haben fokussierte Ionenstrahlen ein großes Potential für viele weitere Anwendungen in der Nanotechnologie“, erklärt Gregor Hlawacek, Leiter der Arbeitsgruppe Ioneninduzierte Nanostrukturen am HZDR-Institut für Ionenstrahlphysik und Materialforschung und Koordinator des FIT4NANO-Projektes. „Beispielsweise lassen sich damit im Nanobereich Oberflächen flexibel strukturieren oder lokale Materialeigenschaften gezielt verändern. Für die Quantentechnologie, die Halbleiterindustrie oder die Modifizierung von zweidimensionalen beziehungsweise 2D-Materialien – also kristallinen Materialien, die aus nur einer oder wenigen Lagen von Atomen oder Molekülen bestehen – könnte unsere Technologie bedeutsam werden. Auch bei Anwendungen in der Medizin werden FIBs zukünftig eine wichtige Rolle spielen.“

FIT4NANO will Entwickler, Hersteller und Anwender der FIB-Technologie aus ganz Europa miteinander vernetzen und Kontakt- und Austauschmöglichkeiten schaffen. Ziel ist es, die grundlegenden Erkenntnisse zur Nutzung fokussierter Ionenstrahlen zusammenzuführen, Kooperationen zu ermöglichen und gemeinsam neue Produkte und Anwendungstechniken zu entwickeln. An dem Projekt nehmen rund 80 experimentelle und theoretische Arbeitsgruppen aus 30 Ländern teil.

Nanotechnologie der nächsten Generation
Im Mittelpunkt stehen sowohl funktionelle Nanostrukturen und -materialien als auch Ionenstrahl-basierte Analysemethoden. Zum Beispiel lassen sich auf der Nanoebene die elektrischen Eigenschaften von 2D-Materialien so verändern, dass aus Leitern Halbleiter werden. In Richtung Quantenkommunikation zielen die Forschung zu Defekten in 2D-Materialien und der Einbau einzelner Ionen. Eine Anwendung mit Heliumionen, die Heliumionen-Mikroskopie, ermöglicht direkte Einblicke in biologische Proben wie Zellstrukturen und Viruspartikel, so etwa auch in die Interaktion von SARS-CoV-2 mit zur Herstellung von Impfstoffen genutzten sogenannten Vero-Zellen – ein aktueller Beitrag der Ionenstrahlphysiker*innen zur Entwicklung neuer Vakzine gegen Corona-Viren. Arbeitsgruppen am HZDR und ihre Partner verwenden FIBs darüber hinaus, um Degradationsprozesse in Lithium-Akkumulatoren zu erkennen oder Mineralien in neuen Erzlagerstätten auf die Spur zu kommen.

Das auf vier Jahre angelegte Programm startete Mitte Oktober 2020 mit einem Kick-off-Meeting, das Corona-bedingt als Videokonferenz stattfand. „Wir haben drei inhaltliche Schwerpunkte definiert“, erzählt der Projektkoordinator. „Da ist zum einen die Weiterentwicklung der fokussierten Ionenstrahltechnologie, dann ihre Anwendung auf nanostrukturierte Funktionsmaterialien und schließlich der theoretische Hintergrund zu den Wechselwirkungen zwischen Ionen und Festkörpern.“ Für den Austausch und Wissenstransfer untereinander sind neben jährlichen projektweiten Treffen auch Schulungen für Doktoranden und Postdocs, kürzere wissenschaftliche Austausche, die Bereitstellung von Datenbanken und gemeinsame Veröffentlichungen geplant. Für die Netzwerkaktivitäten stellt das EU-Programm COST (European Cooperation in Science and Technology) pro Jahr bis zu 120.000 Euro bereit.

Austausch in vier Fachgruppen
Die größte Arbeitsgruppe bilden Anwender, die fokussierte Ionenstrahlen für die Materialanalyse und die Herstellung neuartiger Nanomaterialien in einer Größenordnung unter 10 Nanometer nutzen wollen. Besonders stark vertreten sind hier Wissenschaftler*innen aus „forschungs- und innovationsschwächeren“ europäischen Staaten, sogenannte Zielstaaten für Inklusion (ITC – Inclusiveness Targeted Countries). Forscher*innen verschiedener Fachrichtungen erhalten durch das Projekt Zugang zu High-End-Geräten, die ihnen sonst nicht zur Verfügung stehen.

In einer anderen Gruppe kooperieren akademische und kommerzielle Technologieentwickler, um weitere Ionenquellen wie Eisen-, Kobalt- oder Nickellegierungen für FIB-Anwendungen nutzbar zu machen oder neue Probenhalter, Detektoren und andere, verbesserte Werkzeuge zu entwickeln.

Die Wechselwirkungen zwischen Ionen und Festkörpern besser zu verstehen ist das Ziel der Arbeitsgruppe „Theorie und Simulation“. Auf den vergleichsweise großen Längenskalen im Mikrometerbereich sind sie gut erforscht. Doch bearbeiten die Wissenschaftler*innen nur nanometergroße Strukturen mit ihren FIBs, werden an den Probenrändern ablaufende, zuvor vernachlässigbare Prozesse wie die Abtragung von Material nun überproportional bedeutsam. Außerdem können die Ionen nicht mehr ihre gesamte Energie im Innern der Probe abgeben, was zu einer Abweichung vom erwarteten Effekt führt. Auch andere Vorgänge bei Probengrößen im Nanometerbereich sind noch nicht verstanden. So beobachteten die Forscher*innen manchmal eine unerwartete Stabilität von Strukturen gegen die zerstörerische Wirkung des fokussierten Ionenstrahls, aber oft auch das Gegenteil. Antworten auf diese Fragen sind jedoch grundlegend für neue Anwendungen.

Wissenstransfer und Datenbanken
Eine vierte Gruppe engagiert sich in der Kommunikation und Öffentlichkeitsarbeit. Nicht nur der Wissenstransfer untereinander, auch der zu Industrie und interessierten Laien soll gefördert werden. Die Initiator*innen des Projekts möchten ihre Forschung vor allem Lehrkräften und Schüler*innen nahebringen und für das Thema begeistern, unter anderem auch durch die Entwicklung und Bereitstellung von Lehrmaterial.

Grundlage für die erfolgreiche Zusammenarbeit im Netzwerk ist der Zugang zu Informationen, vor allem zu solchen, die für viele der Beteiligten bisher nicht verfügbar sind. Das betrifft europaweit vorhandene Geräte ebenso wie Forschungsdaten und Methodenwissen. Mit dem „FIB-Almanach“ soll eine Datenbank entstehen, die besondere Instrumente, deren Verfügbarkeit und Anwendungsspektren auflistet. Außerdem wird ein „FIB-Atlas“ mit Referenzdaten und einer Ionen- und Materialdatenbank erstellt. Hier finden Wissenschaftler*innen Informationen zu Methoden, Standardbedingungen oder vorhandene Lösungen zu ihrer Fragestellung.

Der Austausch der Arbeitsgruppen findet zunächst nur online statt. „Ein erstes Online-Meeting ist für das Frühjahr 2021 geplant“, sagt Gregor Hlawacek. „Wir hoffen, dass bei der großen Jahreskonferenz im Spätsommer dann endlich alle persönlich zusammenkommen können.“

Weitere Informationen:
Dr. Gregor Hlawacek
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel.: +49 351 260 3409 | E-Mail: g.hlawacek@hzdr.de
Twitter: @FIT4NANO

Medienkontakt:
Simon Schmitt, Wissenschaftsredakteur
Abteilung Kommunikation und Medien am HZDR
Tel.: +49 351 260 3400 | E-Mail: s.schmitt@hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR entwickelt und betreibt große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen.
Es ist Mitglied der Helmholtz-Gemeinschaft, hat sechs Standorte (Dresden, Freiberg, Görlitz, Grenoble, Leipzig, Schenefeld bei Hamburg) und beschäftigt knapp 1.200 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 170 Doktoranden.

Wissenschaftliche Ansprechpartner:

Dr. Gregor Hlawacek
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel.: +49 351 260 3409 | E-Mail: g.hlawacek@hzdr.de
Twitter: @FIT4NANO

Weitere Informationen:

https://www.hzdr.de/presse/fit4nano_great_potential_for_tiniest_structures

Media Contact

Dr. Christine Bohnet Kommunikation und Medien
Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Selen-Proteine …

Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…

Pendler-Bike der Zukunft

– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…

Neuartige Methode zur Tumorbekämpfung

Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…