Faltbar wie ein Akkordeon: Internationales Forschungsteam biegt einzelne Nanostrukturen
Anschließend nahmen sie automatisch wieder ihre Ursprungsform ein, ohne eine Beschädigung aufzuweisen. Das macht hochentwickelte Anwendungen sowohl in der Materialwissenschaft wie auch in der regenerativen Medizin denkbar. Seine Ergebnisse veröffentlichte das Forschungsteam in Nature Communications.
An neuen Materialien interessiert Wissenschaftler und Wissenschaftlerinnen vor allem eines: Welche Eigenschaften haben sie und wie verhalten sie sich unter verschiedenen Bedingungen? Davon hängen auch die Einsatzmöglichkeiten der Materialien ab. „Um das gesamte mechanische Verhalten eines Materials vorhersagen zu können, müssen wir die Form der einzelnen Strukturen untersuchen, aus denen es aufgebaut ist“, erklärt Dr. Yogendra Mishra, Materialwissenschaftler in der Arbeitsgruppe Funktionale Nanomaterialien an der CAU.
Aerographit ist aufgebaut aus Tetrapoden, kohlenstoffhaltigen 3D-Nanostrukturen, die aus vier, hohlförmigen Armen bestehen. Miteinander verbunden bilden sie ein poröses, extrem leichtes Netzwerk und bringen das Gewicht von Aerographit auf gerade einmal 0,2 Milligramm pro Kubikzentimeter. „Diese besondere Struktur verleiht dem Material eine hohe mechanische Stabilität und eine vergleichsweise große Oberfläche. Damit bekommt es spannende physikalische und chemische Eigenschaften“, sagt Daria Smazna, Doktorandin in dem Projekt.
Das internationale Forschungsteam unter Kieler Leitung konnte jetzt zeigen, dass Aerographit sogar extrem faltbar ist. „Normalerweise können Materialien wie Kohlenstoff oder Metalle nicht rückstandsfrei geknickt werden, aber aufgrund ihrer speziellen Struktur sind unsere Kohlenstoff-Netzwerke hoch flexibel und gleichzeitig mechanisch stabil“, erklärt Professor Rainer Adelung, Leiter der Arbeitsgruppe Funktionale Nanomaterialien. Vorstellen könne man sich das in etwa wie bei einem Bogen Papier.
„Ein glattes Papier leistet keinen Widerstand, hält man es an einer Seite fest, hängt es einfach herunter. Rollen wir es aber zusammen oder zerknüllen es, bekommt es eine gewisse Festigkeit“, so der Materialwissenschaftler weiter. Es kommt also auf die geometrische Anordnung innerhalb des Materials an. Die besondere Form der Tetrapoden ließ die Forschenden vermuten, dass sie sich trotz der Leichtigkeit des Aerographits falten lassen könnten. Denn die einzelnen Arme haben sehr dünne Wände und sind innen hohl.
„Dadurch können sie an verschiedenen Stellen geknickt werden und zwar reversibel. Sie gehen automatisch in ihre Ursprungsform zurück ohne Schaden zu nehmen“, erklärt Mishra. „Ähnlich wie ein Akkordeon kann das dreidimensionale Objekt also in ein zweidimensionales zusammengefaltet und wieder aufgeklappt werden.“
Die Kieler Forschenden entwickelten ein analytisches Modell, um zu beschreiben, wie sich Aerographit verhält, wenn es zusammengefaltet wird – zumindest nach ihrer Vermutung. Denn um zu beweisen, dass ihr Modell tatsächlich zutrifft, mussten sie die Mikrometer großen Objekte nicht nur in der Theorie, sondern auch in der Praxis knicken. Dafür benötigen sie ein spezielles Rasterelektronenmikroskop, das sie in Riga (Estland) fanden.
Hier arbeitet das Kieler Team bereits mit Wissenschaftlern und Wissenschaftlerinnen für ein anderes Projekt zusammen. Mit einer nanoskaligen Messnadel konnten die Kollegen dort die Aerographit-Tetrapoden greifen und verbiegen. Professor Nicola Pugno und Dr. Stefano Signetti, Materialwissenschaftler der italienischen Universität Trento, lieferten den endgültigen Beweis, dass die Annahmen der Kieler Kollegen korrekt waren. „Unsere theoretischen Berechnungsmodelle stimmen genau mit den Annahmen der Kieler Wissenschaftler und den experimentellen Beobachtungen aus Riga überein“, so Co-Autor Pugno.
„Die Berechnungsmethode, die durch diese internationale Zusammenarbeit entwickelt und verifiziert wurde, lässt sich auf Tetrapoden in verschiedenen Größen übertragen. Sie liefert eine wertvolle Basis, um die Eigenschaften von ganzen Tetrapodennetzwerken und Aerographit weiter zu untersuchen“, erläutert Mishra. Zu verstehen, wie sich Netzwerke von hohlförmigen Tetrapoden beliebig falten lassen ohne dabei beschädigt zu werden, könnte langfristig dazu beitragen, die Herstellung von hochporösen Festkörpern wie Aerogelen und Schaumstoffen zu optimieren oder sie bei der Regeneration von Gewebe zu verwenden (sogenannte Scaffolds in der Medizintechnik).
Original publication
Raimonds Meija, Stefano Signetti, Arnim Schuchardt, Kerstin Meurisch, Daria Smazna, Matthias Mecklenburg, Karl Schulte, Donats Erts, Oleg Lupan, Bodo Fiedler, Yogendra Kumar Mishra, Rainer Adelung & Nicola M. Pugno. Nanomechanics of individual aerographite tetrapods. Nat. Commun. 8, 14982 doi: 10.1038/ncomms14982 (2017).
Video
https://images.nature.com/original/nature-assets/ncomms/2017/170412/ncomms14982/…
Das Video zeigt, wie der Arm einer einzelnen Aerographit-Tetrapode mit einer Messnadel gefaltet wird, während die anderen Arme fixiert sind.
Credit: Donats Erst, University of Latvia
Bildmaterial steht zum Download bereit.
http://www.uni-kiel.de/download/pm/2017/2017-250-1.jpg
Bildunterschrift: Bei den orangen Tetrapodenmodellen handelt es sich eigentlich um gewöhnliche Markierungsobjekte, wie sie auf Sportplätze genutzt werden. Den Forschenden an der Uni Kiel dienen sie als Demonstratoren, denn genau wie die echten Tetrapoden sind die Kunststoffobjekte von innen hohl und lassen sich so leicht zusammendrücken und kehren anschließend in ihre ursprüngliche Form zurück. Materialwissenschaftler Yogendra Kumar Mishra und Doktorandin Daria Smazna zeigen den Effekt.
Foto/Credit: Siekmann/CAU
http://www.uni-kiel.de/download/pm/2017/2017-250-2.jpg
Bildunterschrift: Das schwarze Aerographit gilt als leichtestes Material der Welt. Aufgebaut ist es aus winzigen Tetrapodenstrukturen wie das orange Modell.
Foto/Credit: Siekmann/CAU
http://www.uni-kiel.de/download/pm/2017/2017-250-3.jpg
Bildunterschrift: An der Technischen Fakultät pressen die Materialwissenschaftler Aerographit zusammen und messen, wieviel Kraft dabei wirkt. Um allerdings die einzelnen Tetrapodenstrukturen, aus denen Aerographit besteht, bewegen zu können, benötigten sie ein spezielles Rasterelektronenmikroskop in Riga.
Foto/Credit: Siekmann/CAU
http://www.uni-kiel.de/download/pm/2017/2017-250-4.jpg
Bildunterschrift: Ein Tetrapodenarm in normaler Gestalt; (b) eine Nadel berührt den Arm, der sich langsam zu knicken beginnt; (c) der Arm ist stark geknickt, bevor er (d) ohne Beschädigung wieder seine Ursprungsform einnimmt.
Foto/Credit: Donats Erst, University of Latvia
http://www.uni-kiel.de/download/pm/2017/2017-250-5.png
Bildunterschrift: Ein Netz aus vierarmigen Kohlenstoff-Tetrapoden bildet das hochporöse Material Aerographit.
Foto/Credit: AG Adelung
Kontakt:
Dr. habil. Yogendra Kumar Mishra
Arbeitsgruppe Funktionale Nanomaterialien
Technische Fakultät
Telefon: +49 431 880-6183
E-Mail: ykm@tf.uni-kiel.de
Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Redaktion: Julia Siekmann
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Twitter: www.twitter.com/kieluni Facebook: www.facebook.com/kieluni, Instagram: instagram.com/kieluni
Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt „Nanowissenschaften und Oberflächenforschung“ (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische, Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Materialwissenschaft, Chemie, Physik, Biologie, Elektrotechnik, Informatik, Lebensmitteltechnologie und verschiedenen medizinischen Fächern zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf http://www.kinsis.uni-kiel.de
http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2017-250-nanoakkordeon
Media Contact
Alle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Lichtmikroskopie: Computermodell ermöglicht bessere Bilder
Neue Deep-Learning-Architektur sorgt für höhere Effizienz. Die Lichtmikroskopie ist ein unverzichtbares Werkzeug zur Untersuchung unterschiedlichster Proben. Details werden dabei erst mit Hilfe der computergestützten Bildverarbeitung sichtbar. Obwohl bereits enorme Fortschritte…
Neue Maßstäbe in der Filtertechnik
Aerosolabscheider „MiniMax“ überzeugt mit herausragender Leistung und Effizienz. Angesichts wachsender gesetzlicher und industrieller Anforderungen ist die Entwicklung effizienter Abgasreinigungstechnologien sehr wichtig. Besonders in technischen Prozessen steigt der Bedarf an innovativen…
SpecPlate: Besserer Standard für die Laboranalytik
Mehr Effizienz, Tempo und Präzision bei Laboranalysen sowie ein drastisch reduzierter Materialverbrauch: Mit der SpecPlate ersetzt das Spin-off PHABIOC aus dem Karlsruher Institut für Technologie (KIT) durch innovatives Design gleich…