Forscher der TU Dortmund wandeln wässriges Gel zu glasartigem Material

Haben ihre Forschung im renommierten Wissenschaftsmagazin Nature veröffentlicht: Prof. Jörg Tiller (re.) und Nicolas Rauner (li.) von der Fakultät Bio- und Chemieingenieurwesen der TU Dortmund sowie Monika Meuris. Bild: Nikolas Golsch/TU Dortmund

Bei der Entwicklung des Biomaterials haben sich Prof. Jörg Tiller und Doktorand Nicolas Rauner von der Natur inspirieren lassen – genauer gesagt, von der Biomineralisation, einem der faszinierendsten biochemischen Prozesse. Biomineralien kommen in Zähnen und Knochen, in Schneckenhäusern, Muschelschalen und Krabbenpanzern oder in Kieselalgen vor.

Ihre extrem feinen Strukturen, ihr ausgefeilter Aufbau und ihre besonderen Eigenschaften beschäftigen Forscherinnen und Forscher seit Langem – und liefern immer wieder Ansatzpunkte für die Entwicklung künstlicher Werkstoffe.

Ein solcher künstlicher Werkstoff ist das „Hydrogel“, das Prof. Jörg Tiller und Nicolas Rauner entwickelt haben und jetzt in der Fachzeitschrift Nature beschreiben. Was kann ihr Hydrogel, was andere nicht können? Ein Hydrogel ist zunächst einmal ein in Wasser gequollenes polymeres Netzwerk, also ein Material, das eigentlich fast nur aus Wasser besteht.

Ein aus dem Alltag bekanntes Hydrogel ist die Götterspeise. Nun ist die Götterspeise nicht umsonst auch als „Wackelpudding“ bekannt: Denn sie ist weder steif noch zäh, mit dem Löffel kann man sie leicht abtrennen. Steif ist ein Material, das sich schwer verbiegen lässt, und zäh, wenn man es stark verbiegen kann, bevor es zerbricht.

Hier setzt die Forschung von Tiller und Rauner an: Ihr Ziel war es, ein künstliches Hydrogel zu entwickeln, das ultrasteif und zugleich sehr zäh ist. Steife Hydrogele gibt es bisher nicht. Durch eine besondere Nanostruktur haben die Forscher es jetzt geschafft, aus einem „Wackelpudding“ ein glasartiges Material zu machen, das hauptsächlich aus Wasser besteht, sich nur mit Kraft verbiegen lässt und dabei noch stark dehnbar ist. So kann es großem Druck standhalten, ohne zu brechen.

Dass das neue Hydrogel diese beiden wertvollen Eigenschaften vereint, liegt an seiner besonderen Struktur, die durch Biomineralisation erzielt wird: Enzyme, sogenannte Phosphatasen, liegen extrem fein verteilt im Material vor. Sie sind die Katalysatoren, die den Strukturbildungsprozess auslösen, bei dem die Mineralisation direkt im Material geschieht.

So entsteht eine feste und wohlgeordnete Calciumphosphat-Nanostruktur, die ein stabiles Netzwerk bildet und für die besonderen Eigenschaften verantwortlich ist. Die aufwendige Aufklärung der Strukturen gelang dabei Monika Meuris, Expertin für Elektronenmikroskopie am Zentrum für Elektronenmikroskopie und Materialforschung (ZEMM) der TU Dortmund. In Zukunft wollen die Forscher diese neue Art der Materialherstellung für den Nachbau natürlicher Verbundmaterialien wie Muscheln oder Knochen nutzen.

Für beide Wissenschaftler ist es die erste Nature-Publikation – und eine besondere Auszeichnung, denn aus dem Bereich Materialwissenschaften stammen weniger als zehn Prozent aller Nature-Artikel. „Wir haben uns nach fünf Jahren Forschungsarbeit in einem mehrmonatigen Begutachtungs-prozess durchgesetzt“, sagt Prof. Jörg Tiller. „Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics“ lautet der Titel des Artikels.

Prof. Jörg Tiller ist Professor für Biomaterialien und Polymerwissenschaften an der Fakultät Bio- und Chemieingenieurwesen der TU Dortmund. Nicolas Rauner hat an der TU Dortmund Polymerwissenschaften studiert und promoviert derzeit bei Tiller. Monika Meuris ist Leiterin des Zentrums für Elektronenmikroskopie und Materialforschung (ZEMM), das ebenfalls zur Tiller-Gruppe gehört. An der TU Dortmund erforscht und entwickelt Prof. Jörg Tiller seit 2007 unter anderem Biomaterialien, also Materialien, die mit biologischen Systemen interagieren. Diese können zum Beispiel antimikrobielle oder biokatalytische Eigenschaften haben oder auf äußere Einflüsse reagieren. Weitere Forschungsschwerpunkte liegen in den Bereichen Smart Materials und Polymersynthese.

http://dx.doi.org/10.1038/nature21392

Media Contact

Martin Rothenberg idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.tu-dortmund.de/

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spezielle Beschichtungen auf der ISS im Test

Montanuniversität Leoben bringt Innovation ins All: Ein bedeutender Schritt für die Weltraumforschung und die Montanuniversität Leoben: Nach langen Vorbereitungsarbeiten sind hochentwickelte Dünnfilmbeschichtungen aus Leoben nun auf der Internationalen Raumstation (ISS)…

Holzfeuerungen mit bis zu 80% weniger NOx-Emissionen

Fraunhofer Forscher haben gemeinsam mit dem Projektpartner Endress Holzfeuerungen eine neuartige Feuerungstechnik entwickelt, die NOx-Emissionen um bis zu 80 Prozent reduzieren kann. Damit können auch zukünftige Grenzwerte zuverlässig eingehalten werden….

Ein neues Puzzlestück für die Stringtheorie-Forschung

Wissenschaftlerin vom Exzellenzcluster Mathematik Münster beweist Vermutung aus der Physik. Dr. Ksenia Fedosova vom Exzellenzcluster Mathematik Münster hat mit einem internationalen Forschungsteam eine Vermutung aus der Stringtheorie bewiesen, die Physikerinnen…