Forscher entwickeln festes Material mit beweglichen Partikeln, die auf äußere Einflüsse reagieren

Bei höherer Temperatur (links) verteilen sich die Nanopartikel in den Tröpfchen - das Material ist rubinrot; bei niedriger Temperatur (rechts) ballen sich zusammen – das Material wird Grau-Violett. Quelle: INM; frei im Zusammenhang mit dieser Mitteilung

Wie bekommt man feste Partikel in einem festen Material dazu, sich zu bewegen? „In Stahl, Beton oder Kunststoff ist das selten erwünscht, denn freie Bewegung bedeutet eine potentielle Schwachstelle im Material. Deshalb haben wir in unser aktives Nanokomposit abgekoppelte Teilbereiche eingebaut, in denen sich die Partikel bewegen können, während der Rest stabil bleibt“, erklärt Tobias Kraus, Leiter des Programmbereichs Strukturbildung am INM.

Dafür bediente sich das Forschungsteam eines Tricks: Wie Rosinen in einem Wackelpudding verteilten sie in einem Kunststoff feinste Flüssigkeits-Tröpfchen, in die sie die Gold-Nanopartikel einlagerten. So können sich die Nanopartikel innerhalb jedes Tropfens in der Flüssigkeit frei bewegen. Das wäre nicht möglich, wenn sie als Partikel direkt im Festkörper verteilt wären.

„Diese Partikel können sich nun in den Tropfen entweder eng zusammenballen oder im gesamten Tropfen frei verteilen. Die Farbe der Partikel ändert sich abhängig davon, wie weit sie voneinander entfernt sind, in unserem Fall zum Beispiel von Rubinrot nach Grau-Violett. Weil die Partikel sich wieder trennen können, ist die Farbänderung auch jeder Zeit umkehrbar“, erläutert Professor Kraus.

Mit dem bloßen Auge sind weder die Tröpfchen, noch die Nanopartikel darin sichtbar. Das gesamte Komposit ist durchscheinend und eben je nach Temperatur unterschiedlich farbig.

„Damit eignet sich diese Entwicklung gerade auch, wenn durchsichtige Materialien erforderlich sind. Wir können uns das Material auch sehr gut auf transparenten Folien vorstellen“, sagt der Materialwissenschaftler Kraus.

Während das Zusammenballen der Partikel zurzeit über die Temperatur gesteuert wird, wollen die Wissenschaftler diese Wirkung in Zukunft auch durch chemische Substanzen erreichen. „Dann könnte man zum Beispiel hohe Konzentrationen von Vitamin C oder aber auch von Giftstoffen für den Verbraucher direkt sichtbar machen“, wagt Kraus den Blick in die Zukunft.

Ihr Experte am INM:
Prof. Dr. Tobias Kraus
Leiter Strukturbildung
Tel: 0681-9300-389
tobias.kraus@leibniz-inm.de

David Doblas Jiménez, Jonas Hubertus, Thomas Kister, Tobias Kraus, „A translucent nanocomposite with liquid inclusions of a responsive nanoparticle dispersion“; Advanced Materials, https://doi.org/10.1002/adma.201803159

Media Contact

Dr. Carola Jung idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.inm-gmbh.de

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Selen-Proteine …

Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…

Pendler-Bike der Zukunft

– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…

Neuartige Methode zur Tumorbekämpfung

Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…