Gedruckte organische Solarzellen

Gedruckte organische Solarzellen.
Foto: Eva M. Herzig

Forschungsteam der Universität Bayreuth an neuer DFG-Forschungsgruppe beteiligt.

Die Deutsche Forschungsgemeinschaft (DFG) fördert in den nächsten vier Jahren eine Forschungsgruppe zu gedruckten organischen Solarzellen. An diesem von der TU Chemnitz geleiteten Verbund sind Wissenschaftler*innen von insgesamt sieben Universitäten beteiligt. Prof. Dr. Eva M. Herzig, Juniorprofessorin für Dynamik und Strukturbildung an der Universität Bayreuth, erforscht mit ihrem Team die aktiven Schichten von organischen Solarzellen. Dabei steht die Frage im Mittelpunkt, wie die Umwandlung des Sonnenlichts in freie Ladungsträger durch die Anordnung der Moleküle optimiert werden kann.

Organische Solarzellen sind leicht und flexibel und können mit geringem Energieaufwand hergestellt werden, ihr hauptsächlicher Bestandteil ist Kohlenstoff. Trotz intensiver Forschung weltweit ist es bisher noch nicht gelungen, großflächige organische Solarzellen herzustellen, die zwei Eigenschaften kombinieren: hohe Stabilität, die eine rasche Alterung verhindert, und hohe Effizienz bei der Umwandlung des Sonnenlichts in elektrische Energie. Die neue universitätsübergreifende DFG-Forschungsgruppe hat sich deshalb das Ziel gesetzt, diejenigen Faktoren, die für die Effizienz und Stabilität gedruckter organischer Solarzellen ausschlaggebend sind, zu identifizieren und gezielt zu beeinflussen. Gemeinsam werden alle beteiligten Forscher*innen darauf hinarbeiten, dass hochleistungsfähige und langlebige Solarzellen kostengünstig im Industriemaßstab gedruckt werden können.

Das Team von Prof. Dr. Eva Herzig an der Universität Bayreuth ist spezialisiert auf die Erforschung der aktiven Schicht organischer Solarzellen. In dieser Schicht wird das Sonnenlicht in freie Ladungsträger – das heißt in Elektronen und Löcher – umgewandelt. Dabei spielt die räumliche Verteilung der Moleküle eine zentrale Rolle.

„In Bayreuth wollen wir untersuchen, wie sich die Anordnung der Moleküle in der aktiven Schicht beeinflussen lässt, wenn organische Solarzellen gedruckt werden. Eine weitere zentrale Frage ist es, wie stabil diese gezielte Nanostrukturierung in der fertig gedruckten Solarzelle sein wird“, erklärt Herzig. Um diese Fragen klären zu können, steht ihrer Arbeitsgruppe ein hochmodernes Röntgengerät zur Verfügung. Neueste Technologien auf dem Campus ermöglichen es zudem, das Trocknen sehr dünner organischer Schichten zu beobachten und systematisch zu beeinflussen. Darüber hinaus sind Experimente an Großforschungseinrichtungen im In- und Ausland, beispielsweise am Deutschen Elektronen-Synchrotron (DESY) in Hamburg oder der Advanced Light Source (ALS) in Berkeley/USA, geplant. Mit ihren Forschungsergebnissen wird die „Herzig Group“ innerhalb der DFG-Forschungsgruppe dazu beitragen, organische Solarzellen von Grund auf zu verstehen und weiterzuentwickeln.

Die Leitung der neuen DFG-Forschungsgruppe mit dem Titel „Gedruckte & stabile organische Photovoltaik mit Nicht-Fullerenakzeptoren“ liegt bei Prof. Dr. Carsten Deibel an der TU Chemnitz, die mit insgesamt vier Fachgruppen am Verbundprojekt beteiligt ist. Weitere interdisziplinäre Forschungsteams sind – neben der Arbeitsgruppe von Prof. Dr. Eva M. Herzig in Bayreuth – an der TU Dresden, der FAU Erlangen-Nürnberg, der Universität Heidelberg, der Universität Potsdam und der britischen Universität Durham angesiedelt.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Eva M. Herzig
Dynamik und Strukturbildung – Herzig Group
Universität Bayreuth
Telefon: +49 (0)921 / 55-2619
E-Mail: eva.herzig@uni-bayreuth.de

https://www.uni-bayreuth.de/

Media Contact

Christian Wißler Pressestelle
Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Lange angestrebte Messung des exotischen Betazerfalls in Thallium

… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…

Soft Robotics: Keramik mit Feingefühl

Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…

Klimawandel bedroht wichtige Planktongruppen im Meer

Erwärmung und Versauerung der Ozeane stören die marinen Ökosysteme. Planktische Foraminiferen sind winzige Meeresorganismen und von zentraler Bedeutung für den Kohlenstoffkreislauf der Ozeane. Eine aktuelle Studie des Forschungszentrums CEREGE in…