Gefangen in der Sackgasse

Chemische Heterogenität innerhalb der Mikrostruktur führt zu einer verbesserten Beständigkeit gegen wasserstoffinduzierte Rissbildung und unterdrückt damit ein wasserstoffinduziertes vorzeitiges Materialversagen
Die Abbildung wurde reproduziert aus B. Sun et al, Nat. Mater. 2021

– wie die Ausbreitung Wasserstoff-induzierter Risse in Stählen gestoppt wird.

Max-Planck-Wissenschaftlerteam veröffentlicht neueste Erkenntnisse in der Zeitschrift Nature Materials.

Wasserstoff – das kleinste aller Atome und doch immer wichtiger zur Erreichung einer klimaneutralen Wirtschaft. Während Politik, Industrie und Forschung darauf hinarbeiten, möglichst viel Wasserstoff als nachhaltigen Energieträgern zu nutzen, ist die Wasserstoffversprödung von hochfesten Legierungen zu einem der Hauptprobleme geworden, die die Realisierung der Wasserstoffwirtschaft behindern. Hochfeste Legierungen werden in der Automobil- und Luftfahrtindustrie dringend benötigt für den Bau von Leichtbaukomponenten und in allen anderen Bauteilen, die zur Speicherung und zum Transport von Wasserstoff eingesetzt werden.

Wissenschaftler*innen des Max-Planck-Instituts für Eisenforschung (MPIE) und ihre Kolleg*innen von der Tsinghua University China und der Norwegian University of Science and Technology haben einen Weg gefunden, wasserstoffinduzierte Risse in hochfesten Stählen zu stoppen. Das Forscherteam veröffentlichte ihre Ergebnisse in der Fachzeitschrift Nature Materials.

„Stähle machen 90 % des weltweiten Marktes für Metalllegierungen aus und hochfeste Stähle können besonders anfällig für Wasserstoffversprödung sein. Deshalb war es unser Ziel, eine kostengünstige, skalierbare Strategie zu finden, um hochfeste Stähle unter Beibehaltung ihrer mechanischen Leistungsfähigkeit widerstandsfähiger gegen Wasserstoff zu machen.“, erklärt Dr. Binhan Sun, Postdoktorand, Themenleiter für Wasserstoffversprödung in Hochleistungslegierungen am MPIE und Erstautor der Publikation.

Die Wissenschaftler*innen implementierten manganreiche Bereiche in die Mikrostruktur des Stahls, um Risse abzustumpfen und Wasserstoff darin einzufangen und so die Rissausbreitung zu stoppen. „Wir haben unsere Methode mit hochfesten Manganstählen getestet, in denen wir eine extrem hohe Anzahldichte von manganreichen Pufferzonen erzeugt haben. Diese Pufferzonen stellen Sackgassen für Risse dar, indem sie scharfe Risse abstumpfen. Dadurch wird der Stahl doppelt so widerstandsfähig gegen Wasserstoff wie herkömmliche chemisch homogene Stähle, unabhängig davon, wann und wie Wasserstoff in das Material eingedrungen ist“, sagt Dr. Dirk Ponge, Leiter der MPIE-Gruppe „Mechanism-based Alloy Design“, der das Forschungsprojekt betreut.

Die vorgestellte Methode lässt sich prinzipiell auf über 10 etablierte Stahlsorten anwenden. Mögliche Anwendungen sehen die Wissenschaftler*innen auch für andere Legierungssysteme (z.B. mehrphasige Titanlegierungen), die fest, duktil und wasserstoffbeständig sein sollen. Bevor jedoch das Spektrum der Legierungen erweitert wird, wollen die Forscher*innen nun verschiedene Methoden finden, um Pufferzonen mit chemischer Heterogenität innerhalb des Gefüges präzise zu erzeugen. Diese verschiedenen Methoden könnten den Effekt der Rissbeständigkeit weiter verstärken und besser zu den etablierten industriellen Verarbeitungsrouten passen.

Wissenschaftliche Ansprechpartner:

Dr. Dirk Ponge, ponge@mpie.de

Originalpublikation:

B. Sun, W. Lu, B. Gault, R. Ding, S. K. Makineni, D. Wan, C.-H. Wu, H. Chen. D. Ponge, D. Raabe: Chemical heterogeneity enhances hydrogen resistance in high-strength steels. In: Nature Materials 2021, https://doi.org/10.1038/s41563-021-01050-y

Weitere Informationen:

https://www.mpie.de/4581011/dead-ends-for-hydrogen-induced-cracks

Media Contact

Yasmin Ahmed Salem M.A. Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Eisenforschung GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Quantenkommunikation: Effiziente Ansteuerung von Diamant-Qubits mit Mikrowellen

Forschende des Karlsruher Instituts für Technologie (KIT) haben zum ersten Mal in Deutschland gezeigt, wie sogenannte Zinn-Fehlstellen in Diamanten sehr exakt mit Mikrowellen kontrolliert werden können. Diese Defekte haben besondere…

Wenn Ionen zum Katalysator wandern

Neue Einblicke in die Solvatationskinetik an Oberflächen. Die Abteilung Interface Science des Fritz-Haber-Instituts hat weitere Fortschritte im Verständnis der Solvatation von Ionen an Grenzflächen gemacht, wie in ihrer neuesten Veröffentlichung…

Alte Herzen vor der Transplantation stärken

Studie untersucht Wirkung von Senomorphika zum Schutz von Spenderherzen. Anlässlich des Weltherztages am 29. September. Wie die Funktion von Spenderherzen älterer Menschen bei einer Transplantation optimal erhalten werden kann, will…

Partner & Förderer