KI zur Verbesserung von Elektrokatalysatoren

Prof. Dr. Johannes Margraf
Lehrstuhl für Künstliche Intelligenz in der physiko-chemischen Materialanalytik
Foto: Universität Bayreuth

Bayreuther Forscher entwickelt mit Hilfe von Künstlicher Intelligenz eine neue Methode zur Verbesserung von Elektrokatalysatoren.

Prof. Dr. Johannes Margraf hat mit einem Team von Wissenschaftler*innen eine vielversprechende Methode entwickelt, um die Effizienz von Elektrokatalysatoren zu verbessern. Unter Verwendung von Simulationen und künstlicher Intelligenz haben die Forschenden ein Computerprogramm entwickelt, das gleichzeitig mehrere Eigenschaften des Katalysators optimieren kann. Die Ergebnisse wurden nun in der Fachzeitschrift Journal of the American Chemical Society veröffentlicht.

What for?

Brennstoffzellen stellen eine von verschiedenen wichtigen Schlüsseltechnologien in der Energiewende dar. Allerdings ist hier die Abhängigkeit von seltenen Metallen wie Platin als Katalysatoren ein großes Hindernis für deren weitere Verbreitung. Die Forschung des Bayreuther Wissenschaftlers Prof. Dr. Johannes Margraf begegnet dieser Herausforderung, in dem von vornherein Materialkosten in die Optimierung einbezogen werden können. Diese Innovation könnte dazu beitragen, kostengünstige Alternativen zu Platin als Katalysatormaterial in Brennstoffzellen zu entwickeln.

Hochentropie-Legierungen (HEAs) sind eine vielversprechende Art von Materialien für die Elektrokatalyse. Elektrokatalyse ist ein Prozess, bei dem bestimmte Materialien dabei helfen, chemische Reaktionen zu beschleunigen, die in Batterien oder Brennstoffzellen ablaufen. Im Gegensatz zu herkömmlichen Metallkatalysatoren bestehen diese Materialien aus einer Mischung vieler Elemente. Deshalb sind sie sehr komplex aufgebaut und könnten daher bessere katalytische Eigenschaften in Elektrolyseuren und Brennstoffzellen haben. Es ist jedoch schwierig für Forscherinnen und Forscher, die beste Mischung von Elementen für eine bestimmte Anwendung zu finden.

„Bisherige Arbeiten haben sich hauptsächlich darauf konzentriert, die katalytische Aktivität zu verbessern“, sagt Prof. Dr. Johannes Margraf, Lehrstuhl für Physikalische Chemie V: Theorie und Maschinelles Lernen an der Universität Bayreuth. „Wir haben jedoch einen Algorithmus entwickelt, der durch Simulationen und künstliche Intelligenz gleichzeitig mehrere Eigenschaften des Katalysators verbessern kann, wie zum Beispiel Aktivität, Kosten und Stabilität.“ Dadurch konnten die Forschenden aus Bayreuth und vom Fritz-Haber-Institut in Berlin viele neue HEAs vorhersagen, die verschiedene Kompromisse zwischen diesen Eigenschaften bieten.

„Wir haben den Algorithmus speziell für die Sauerstoffreduktion in Brennstoffzellen getestet, wo normalerweise teures Platin als Katalysator verwendet wird. Dabei haben wir Katalysatoren gefunden, die genauso aktiv sind wie Platin, aber viel weniger kosten – nur 10 Prozent im Vergleich zu Platin“, erläutert Margraf. „Zudem konnten wir Katalysatoren bestimmen, die zweieinhalbmal so aktiv sind wie Platin, aber ähnliche Kosten aufrufen.“

Die bisher theoretischen Vorhersagen des Bayreuther Forschers müssen nun noch durch praktische Experimente bestätigt werden.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Johannes Margraf
Lehrstuhl für Künstliche Intelligenz in der physiko-chemischen Materialanalytik

E-Mail: johannes.margraf@uni-bayreuth.de

Originalpublikation:

Wenbin Xu, Elias Diesen, Tianwei He, Karsten Reuter, and Johannes T. Margraf, Discovering High Entropy Alloy Electrocatalysts in Vast Composition Spaces with Multiobjective Optimization, Journal of the American Chemical Society, DOI: doi.org/10.1021/jacs.3c14486

https://www.uni-bayreuth.de/pressemitteilung/KI-zur-verbesserung-von-elektrokatalysatoren

Media Contact

Jennifer Opel Pressestelle

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Herzchirurgieteam im Operationssaal bei der Blutdrucküberwachung zur Vermeidung von Nierenversagen

Herzchirurgie-Risiken: Niedriger Blutdruck mit postoperativer Nierenverletzung verbunden

Erste große Kohortenstudie am Herz- und Diabeteszentrum NRW ausgezeichnet – Hilke Jung stellt Forschungsprojekt auf der FoRUM-Konferenz der Ruhr-Universität Bochum vor Eine Arbeitsgruppe unter der Leitung von Prof. Dr. Vera…

Bodenbakterien, die mit Pflanzenwurzeln interagieren, um Immunantworten und Wurzelwachstum zu beeinflussen.

Mikrobielle Geheimnisse: Pflanzenwachstum mit der Kraft von Bodenbakterien fördern

Um gesund zu bleiben, müssen Pflanzen ihre Energie zwischen Wachstum und der Abwehr schädlicher Bakterien ausbalancieren. Die Mechanismen hinter diesem Gleichgewicht blieben bisher weitgehend rätselhaft. Bodenbakterien: Der unerwartete Schlüssel zur…

Muster mikrobieller Evolution im See Mendota, analysiert mit Metagenom-Daten und saisonalen Einblicken.

Ein endloser Kreislauf: Wie sich einige Bakterien mit den Jahreszeiten entwickeln

Die längste jemals gesammelte natürliche Metagenom-Zeitreihe mit Mikroben offenbart ein verblüffendes evolutionäres Muster, das sich wiederholt. Ein mikrobielles „Murmeltiertagsjahr“ im Lake Mendota Ähnlich wie Bill Murray im Film „Und täglich…