Konkurrenz für Diamanten

Gerüste aus CN₄-Tetraedern in den Kristallstrukturen neuartiger Kohlenstoffnitride, die ultrainkompressibel und superhart sind: hP126-C₃N₄
(c) Uni Bayreuth

Bayreuther Wissenschaftlern stellen superharte multifunktionelle Kohlenstoffnitride her.

In einer bahnbrechenden Forschungsarbeit haben Wissenschaftler lang gesuchte Kohlenstoff-Stickstoff-Verbindungen synthetisiert und das Potenzial von Kohlenstoffnitriden als neue Klasse von superharten multifunktionellen Materialien erschlossen, die es mit Diamant aufnehmen könnten. Die Arbeit wurde nun in der Zeitschrift Advanced Materials veröffentlicht.

https://idw-online.de/de/attachmentdata99969.jpg

Das Bayreuther Team

Seit 1989, als in der Zeitschrift Science eine Kohlenstoff-Stickstoff-Verbindung C₃N₄ mit außergewöhnlichen mechanischen Eigenschaften angekündigt worden war, die möglicherweise die Härte von Diamant übertreffen, arbeiten Forscher*innen weltweit an diesem Thema. Der Durchbruch wurde jetzt von einem internationalen Team von Hochdruckwissenschaftler*innen der Universität Bayreuth und Universität Edinburgh erzielt.

Sie setzten verschiedene Kohlenstoff-Stickstoff-Vorstufen unglaublich hohen Drücken zwischen 70 und 135 Gigapascal (GPa) aus, wobei 100 GPa dem 1.000.000-fachen des Atmosphärendrucks entsprechen, und erhitzten sie in Diamantstempelzellen auf über 2000 Kelvin. Anschließend wurden die Proben mittels Einkristall-Röntgenbeugung an drei Teilchenbeschleunigern charakterisiert: der European Synchrotron Research Facility (ESRF, Frankreich), dem Deutschen Elektronen-Synchrotron (DESY, Deutschland) und der Advanced Photon Source (APS, Vereinigte Staaten).

Die Ergebnisse zeigten vier Kohlenstoffnitride mit den Zusammensetzungen CN, CN₂ und C₃N₄ und unterschiedlich komplexen Strukturen. Die Kristallstrukturen der C₃N₄ Allotrope bestehen aus einem Gerüst aus eckenteilenden CN₄-Tetraedern, was ein Schlüssel zu ihren überlegenen mechanischen Eigenschaften – Ultrainkompressibilität (Inkompressibilität herrscht, wenn das Volumen eines Körpers trotz Drucks fast konstant angenommen werden kann) und Superhärte – ist, die in dieser Arbeit experimentell nachgewiesen wurden. Die Tatsache, dass die Hochdruck-C₃N₄-Kohlenstoffnitride Abdrücke auf einer Diamantoberfläche hinterlassen, ist ein Beweis für ihre Härte, die mit der von Diamant selbst vergleichbar ist.Gerüste aus CN₄-Tetraedern in den Kristallstrukturen neuartiger Kohlenstoffnitride, die ultrainkompressibel und superhart sind: tI14-C₃N₄
Gerüste aus CN₄-Tetraedern in den Kristallstrukturen neuartiger Kohlenstoffnitride, die ultrainkompressibel und superhart sind: tI14-C₃N₄ (c) Uni Bayreuth

„Es wird erwartet, dass die in dieser Arbeit synthetisierten Kohlenstoffnitride neben ihren mechanischen Eigenschaften mehrere außergewöhnliche Funktionalitäten aufweisen und das Potenzial haben, technische Materialien der gleichen Kategorie wie Diamant zu sein. Aber im Gegensatz zu Diamant können sie leicht mit etwas angereichert werden, was bei ‚Diamantelektronik‘ immer ein Problem ist“, sagt Prof. Dr. Natalia Dubrovinskaia vom Labor für Kristallographie an der Universität Bayreuth, eine Hauptautorin der Forschungsarbeit.

Die theoretischen Untersuchungen der physikalischen Eigenschaften wurden von Wissenschaftler*innen der Universität Linköping (Schweden) durchgeführt. Sie haben gezeigt, dass diese stark kovalent gebundenen Materialien nicht nur ultrainkompressibel und superhart sind, sondern auch eine hohe Energiedichte und piezoelektrische Eigenschaften besitzen, zusätzlich zu experimentell in Bayreuth festgestellten photolumineszenten und nichtlinearen optischen Eigenschaften .

Bemerkenswert ist auch, dass alle vier Hochdruck-Kohlenstoffnitride bis auf Umgebungsdruck und -temperatur zurückgewonnen werden können. „Die Rückgewinnung komplexer Materialien, die oberhalb von 100 GPa synthetisiert wurden, ist ein bisher einmaliger Fall und eröffnet damit neue Perspektiven für die Hochdruck-Materialwissenschaft im Allgemeinen“, sagt Prof. Dr. Leonid Dubrovinsky vom Bayerischen Institut für Experimentelle Geochemie und Geophysik an der Universität Bayreuth, ein Hauptautor der Forschungsarbeit.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Dr. h. c. Natalia Dubrovinskaia
Laboratorium für Kristallographie Universität Bayreuth
Materialphysik und Technologie unter extremen Bedingungen
D-95440 Bayreuth
Tel.: +49 (0) 921 553880
E-Mail: natalia.dubrovinskaia@uni-bayreuth.de

Prof. Dr. Dr. h. c. Leonid Dubrovinsky
Bayerisches Geoinstitut
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0) 921 553736
E-Mail: leonid.dubrovinsky@uni-bayreuth.de

Originalpublikation:

Synthesis of Ultra-Incompressible and Recoverable Carbon Nitrides Featuring CN₄ Tetrahedra
Dominique Laniel, Florian Trybel, Andrey Aslandukov, Saiana Khandarkhaeva, Timofey Fedotenko, Yuqing Yin, Nobuyoshi Miyajima, Ferenc Tasnádi, Alena V. Ponomareva, Nityasagar Jena, Fariia Iasmin Akbar, Bjoern Winkler, Adrien Néri, Stella Chariton, Vitali Prakapenka, Victor Milman, Wolfgang Schnick, Alexander N. Rudenko,
Advanced Materials, 2023
DOI : https://onlinelibrary.wiley.com/doi/10.1002/adma.202308030

https://www.uni-bayreuth.de/pressemitteilung/super-harte-nitride

Media Contact

Jennifer Opel Pressestelle

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Die Roboterhand lernt zu fühlen

Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…

Regenschutz für Rotorblätter

Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…

Materialforschung: Überraschung an der Korngrenze

Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…