Leistungsfähige bionische Leichtbauteile material- und kosteneffizient produzieren

Bionisch-verstärkter »BioStrukt«-Demonstrator aus thermoplastischem, carbonfaserverstärktem Kunststoff (CFK).
© Fraunhofer IPT

Vorbild Natur:

Leichtbaukomponenten aus Faserverbundwerkstoffen (FVK) sind aus den Branchen Transport und Mobilität nicht mehr wegzudenken, wenn es darum geht, Materialeinsatz, Nutzlasten und Betriebskosten zu senken. Besonders materialeffiziente Strukturen, die gleichzeitig leicht und widerstandsfähig sind, sind in der Natur zu finden. Beispiele sind die Wabenstrukturen in einem Bienenstock oder die Flügel einer Libelle. Erkenntnisse aus der Bionik nutzen das Fraunhofer-Institut für Produktionstechnologie IPT mit Partnern des Projekts »BioStrukt«: Sie entwickelten eine neue Prozesskette zur Herstellung bionischer Strukturen aus FVK und kombinierten dabei das Tapelegen, Thermoformen und Hinterspritzen.

Hochleistungsmaterialien wie Kohlenstofffasern lassen sich in Kombination mit einer Kunststoffmatrix in bionische Strukturen einbetten. Um funktionalisierte FVK-Bauteile herzustellen, formte das Fraunhofer IPT Organobleche thermisch um. Anschließend wurden die Teile vom Projektpartner SK Industriemodell mit Kunststoff hinterspritzt. Ziel der Forschenden war eine effiziente Materialverwendung durch optimale Auslegung des Bauteils auf die jeweilige Belastung.

FVK-Bauteile durch gelenkte Fasern auf Belastung optimieren

Durch den Einsatz von Organoblechen mit gelenkten, also gezielt ausgerichteten Verstärkungsfasern können die entstehenden Bauteile flexibel und an die jeweilige Bauteilkontur angepasst hergestellt werden. Kraftflüsse verlaufen im Bauteil, wie in der Natur, oft kurvenförmig. Das Ablegen gelenkter Fasern in gekrümmten Tapebahnen, Fiber Steering genannt, ist komplex. Die Komplexität erschwert es, den Prozess auf eine Serienfertigung zu übertragen.

Mit angepasster Anlagentechnik das ganze Potenzial gekrümmter bionischer Strukturen ausschöpfen

Hier setzte das Projekt »BioStrukt« an: Um das gesamte Potenzial bionischer Strukturen auszuschöpfen und den Prozess auf ein industrielles Niveau zu bringen, modifizierten die Projektpartner die zugehörige Anlagentechnik. Die Experten betrachteten die gesamte Prozesskette samt der Handhabung der entstandenen Halbzeuge. Damit die bionischen Strukturen während des Thermoformens die gewünschten Faserausrichtungen bewahren, müssen die Organobleche im aufgewärmten Zustand gezielt eingespannt werden. Die drei Produktionstechnologien Tapelegen, Thermoformen und Hinterspritzen kombinierten die Projektpartner zudem mit einem Greifroboter, der die umgeformten Bauteile automatisiert in die Spritzgussmaschine einsetzt. Eine kontinuierliche Qualitätsüberwachung, die geometrische Ungenauigkeiten und Defekte detektiert, sichert Prozess und Bauteil ab.

Industrienaher Prototyp zum automatisierten Tapelegen

Um thermoplastische Tapes in Kurvenbahnen mit definierten Radien abzulegen und so belastungsoptimierte Organobleche herzustellen, entwickelten die Projektpartner das bereits am Fraunhofer IPT bestehende In-situ-Tapelegesystem »PrePro®2D« weiter. Sie passten das System mechanisch und steuerungstechnisch für das Fiber Steering an, sodass bionische Organobleche automatisiert und daher effizient gefertigt werden können. Der weiterentwickelte Legeprozess erlaubt es, die FVK-Bauteile zuverlässig und kostengünstig in großen Stückzahlen herzustellen.

Im Sinne von Industrie 4.0: Alle Daten werden analysiert

Die Forscherinnen und Forscher erfassen, speichern und analysieren alle Daten, die während der Herstellung des Bauteils gewonnen werden. So konnten sie die Qualität des Halbzeugs und des produzierten Bauteils untersuchen sowie die entwickelte Prozesskette wirtschaftlich und technologisch ganzheitlich bewerten. Darüber hinaus prüften die Experten die erzeugten Bauteile mechanisch im Rahmen von Druckprüfungen. Hier zeigte sich, dass die bionische Verstärkung zu einer erheblichen Zunahme der Bauteilfestigkeit im Vergleich zu einem nicht verstärkten Bauteil führt. Der digitalisierte Produktionsprozess reduziert damit den Materialeinsatz und ist besonders ressourceneffizient. Die hergestellten Leichtbaukomponenten sind zudem deutlich leistungsfähiger als konventionell hergestellte Bauteile.

Zum Projekt »BioStrukt«

Das Projekt »BioStrukt« wurde durch Mittel des Europäischen Fonds für regionale Entwicklung (EFRE) Produktion.NRW gefördert. Es lief von November 2018 bis Februar 2022.

Beteiligte Forschungseinrichtungen und Industriepartner

– Fraunhofer-Institut für Produktionstechnologie IPT, Aachen (Projektleitung)
– Apodius GmbH, Aachen
– SK Industriemodell GmbH, Übach-Palenberg

Wissenschaftliche Ansprechpartner:

Thorsten Pillen M.Sc.
Gruppe »Faserverbundtechnik«

Fraunhofer-Institut für Produktionstechnologie IPT
Steinbachstr. 17
52074 Aachen
Telefon +49 241 8904-409
thorsten.pillen@ipt.fraunhofer.de
www.ipt.fraunhofer.de

Weitere Informationen:

https://www.ipt.fraunhofer.de/de/presse/Pressemitteilungen/220427-leistungsfaehi…

Media Contact

Susanne Krause Externe und interne Kommunikation
Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Darstellung der selektiven RNA-Technologie zur Bekämpfung von Glioblastomzellen.

Selbstzerstörende Krebszellen: Durchbruch in der RNA-Forschung

Jülicher Wissenschaftler nutzen neuartige RNA-Technologie, um Tumore im Gehirn selektiv auszuschalten. Eine anpassbare Plattformtechnologie zur Zerstörung von Glioblastom-Krebszellen Mit einer speziellen RNA-Molekül-Technologie hat ein Team unter der Leitung von Jülicher…

HFpEF-Patienten bei Ausdauer- und Krafttraining im Rahmen einer klinischen Studie zur Bewegungstherapie bei Herzinsuffizienz.

Ausdauertraining: Wie es das Leben von Herzinsuffizienz-Patienten verbessert

Können Kraft- und Ausdauertraining für Patienten mit einer bestimmten Form von Herzinsuffizienz von Vorteil sein? Ein Forschungsteam aus Greifswald hat diese Frage zusammen mit sieben weiteren Forschungszentren in Deutschland untersucht….

Eine Karte, die Schutzmaßnahmen für Haie im Mittelmeer zeigt.

Ein Weckruf zum Schutz der Haie im Mittelmeer vor dem Aussterben

Überfischung, illegaler Fischfang und der zunehmende Handel mit Haifleisch stellen laut einer neuen Studie erhebliche Bedrohungen für die mehr als 80 Hai- und Rochenarten dar, die im Mittelmeer leben. Aktuelle…