Materialwissenschaft: Widerstand wächst auch im Vakuum
Dass zwischen zwei sich bewegenden und sich berührenden Körpern Reibung entsteht, ist lange bekannt. Doch noch immer weiß man zu wenig über diese allgegenwärtige Kraft, um sie in bestimmten Bereichen zu verringern oder sich möglicherweise auch zunutze zu machen.
Viele technische Innovationen werden durch sie erheblich beeinflusst. Materialwissenschaftler der Friedrich-Schiller-Universität Jena haben nun wichtige Erkenntnisse über die Vorgänge rund um die Reibung gesammelt und im Fachjournal „Physical Review Letters“ vorgestellt.
Die Kontaktpunkte vergrößern sich
Gemeinsam mit Kollegen von der Universität Gießen haben die Jenaer Forscher die Reibung zwischen einer Siliziumspitze und einer kristallinen Oberfläche aus Natriumchlorid untersucht. Dazu nutzten sie ein Rasterkraftmikroskop und führten die Experimente mit verschiedenen Umgebungstemperaturen – von 25 bis -175 Grad Celsius – durch.
„Nach der Auswertung der Messergebnisse haben wir festgestellt, dass sich die Kontaktpunkte vergrößern und damit die Steifigkeit nahezu logarithmisch zunimmt“, erklärt Prof. Dr. Enrico Gnecco von der Universität Jena. „Das bedeutet, der Widerstand, auf den die Siliziumspitze trifft, wird größer, je länger man über sie kratzt.“
Auch andere Untersuchungen wurden bereits in diesem Modellsystem geführt, doch fokussierten sich die Wissenschaftler der aktuellen experimentellen und theoretischen Studie erstmals auf die Steifigkeitsänderung des Kontakts. „Wir sind überrascht, dass selbst bei einer absolut reinen und störungsfreien Umgebung dieser Effekt auftritt“, erklärt Gnecco deshalb. Vermutlich vergrößern sich die Kontaktpunkte durch atomare Diffusion. Das heißt, Natriumchlorid-Atome aus der Schicht lagern sich an der Siliziumspitze an.
Erdbeben funktionieren nach dem Stick-Slip-Effekt
Die Wissenschaftler beobachteten während ihrer Untersuchungen besonders den sogenannten Stick-Slip-Effekt, bei dem die Unterschiede in der Steifigkeit besonders zutage treten. Damit ist die durch abwechselndes Haften und Gleiten hervorgerufene ruckartige Bewegung gemeint. Im Alltag kann man dieses Phänomen beispielsweise erfahren, wenn man mit der Hand über einen Luftballon streicht.
„In der Natur begegnet uns der Stick-Slip-Effekt mitunter sehr großformatig und langsam“, erläutert der italienische Materialwissenschaftler von der Universität Jena. „Erdbeben beispielsweise funktionieren nach diesem Prinzip: Zwei Platten gleiten übereinander und geraten dabei mitunter ins Stocken, was Energie freisetzt, die Schwingungen verursachen können.“
Die neuen Erkenntnisse werden allerdings vor allem in kleineren Dimensionen zum Tragen kommen. Beispielsweise beeinträchtigt Reibung die Funktionalität mikroelektronischer Systeme, deren Größe sich eher auf der Nanoskala bewegt, erheblich.
In Zukunft möchte Enrico Gnecco die Forschung auf diesem Gebiet weiter intensivieren. Seit vergangenem Jahr können auch die Jenaer Materialwissenschaftler mit einem eigenen Rasterkraftmikroskop solche Versuche durchführen. „Im Übrigen steht das Gerät in Kooperation mit der Universität auch anderen Einrichtungen und Unternehmen zur Verfügung“, informiert der Jenaer Experte.
Original-Publikation:
Juan J. Mazo, Dirk Dietzel, Andre Schirmeisen, J. G. Vilhena, and Enrico Gnecco: Time Strengthening of Crystal Nanocontacts, Phys. Rev. Lett. 118, 246101,
DOI: https://doi.org/10.1103/PhysRevLett.118.246101
Kontakt:
Prof. Dr. Enrico Gnecco
Otto-Schott-Institut für Materialforschung der Universität Jena
Löbdergraben 32, 07743 Jena
Tel.: 03641 / 947770
E-Mail: enrico.gnecco[at]uni-jena.de
Media Contact
Alle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Lichtmikroskopie: Computermodell ermöglicht bessere Bilder
Neue Deep-Learning-Architektur sorgt für höhere Effizienz. Die Lichtmikroskopie ist ein unverzichtbares Werkzeug zur Untersuchung unterschiedlichster Proben. Details werden dabei erst mit Hilfe der computergestützten Bildverarbeitung sichtbar. Obwohl bereits enorme Fortschritte…
Neue Maßstäbe in der Filtertechnik
Aerosolabscheider „MiniMax“ überzeugt mit herausragender Leistung und Effizienz. Angesichts wachsender gesetzlicher und industrieller Anforderungen ist die Entwicklung effizienter Abgasreinigungstechnologien sehr wichtig. Besonders in technischen Prozessen steigt der Bedarf an innovativen…
SpecPlate: Besserer Standard für die Laboranalytik
Mehr Effizienz, Tempo und Präzision bei Laboranalysen sowie ein drastisch reduzierter Materialverbrauch: Mit der SpecPlate ersetzt das Spin-off PHABIOC aus dem Karlsruher Institut für Technologie (KIT) durch innovatives Design gleich…