Nachhaltiges Isolationsmaterial zum Versand von kühlpflichtigen Produkten

3 cm thick fiber insulation mats (left, based on waste paper; right, based on cellulose), dry-processed, with a density of about 30 kilograms per cubic meter.
Chair of Wood Technology and Fiber Materials Engineering

Forscher des Instituts für Naturstofftechnik der TU Dresden haben ein Isoliermaterial aus Altpapier für den Versand von temperaturempfindlichen Lebensmitteln und Medikamenten entwickelt. Im Rahmen eines Forschungs- und Entwicklungsprojektes konnten die Grundlagen für die Herstellung ökologisch nachhaltiger Frischeversandverpackungen und damit eine Alternative zu umweltschädlichen Styropor- und Kunststoffverpackungen geschaffen werden.

Thermoisolierte Verpackungen halten Versandgüter in einem bestimmten Temperaturbereich. Die Verpackungen gewährleisten eine passive Kühlung, oftmals mit zusätzlichen Kühlmitteln, ohne Energieeintrag. Für den temperaturgeführten Versand werden gegenwärtig überwiegend umweltbelastende Verpackungen aus schwer recycelbaren Rohstoffen eingesetzt.

Innerhalb des Forschungsprojektes wurde auf Grundlage eines speziellen Trockenprozesses Altpapier so aufbereitet, dass daraus faserbasierte Isolationselemente entstehen. Thomas Schrinner, Projektkoordinator an der Professur für Holztechnik und Faserwerkstofftechnik: „Die besondere Herausforderung bestand darin, den Aufbereitungsprozess anzupassen und spezielle Faserstoffrezepturen zu entwickeln, damit die Fasermatten eine besonders geringe Dichte bei ausreichend enger Porengrößenverteilung aufweisen und die Isoliereigenschaften ihr Optimum erreichen.“

Funktionstests unter praxisrelevanten Bedingungen haben gezeigt, dass die entwickelten Isolierelemente aufgrund ihrer geringen Wärmeleitfähigkeit in der Lage sind, konventionelle Isoliermaterialien wie Styropor zu ersetzen. „Durch die geringe Temperaturleitfähigkeit und dem höheren Wärmespeichervermögen von Cellulose übertreffen die Isoliereigenschaften der nachhaltigen Fasermatten sogar die der meisten anderen Materialien“, so Schrinner.

Auch wenn die Faserisolierelemente aufgrund eines möglichen Lebensmittelkontaktes mit Folie ummantelt werden, ist die durch einen Außenkarton stabilisierte Frischeversandverpackung ein vollständig recycelbares Endprodukt. „Der Anteil der Folie am Gesamtsystem ist mit sieben Prozent so gering, dass die Versandverpackung bedenkenlos dem Altpapierkreislauf zugeführt werden kann. Dennoch stellt die Folienummantelung nur eine Zwischenlösung dar. Mit der Entwicklung nachhaltiger Alternativen, wie cellulose-basierte Barriereschichten, haben wir bereits begonnen.“

Die bestehende Isolierkonstruktion hat sich bereits als Systemlösung für den Versandhandel bewiesen. Die Frischeversandverpackungen werden von der easy2cool GmbH vertrieben, welche als Kooperationspartner den Herstellungsprozess für konfigurierbare Isolierelemente und Gesamtverpackungssysteme erprobten und entwickelten.

Über die TU Dresden
Die TU Dresden ist eine der Spitzenuniversitäten Deutschlands und Europas: stark in der Forschung, erstklassig in der Vielfalt und der Qualität der Studienangebote, eng vernetzt mit Kultur, Wirtschaft und Gesellschaft. Als moderne Universität bietet sie mit ihren fünf Bereichen in 18 Fakultäten ein breit gefächertes wissenschaftliches Spektrum wie nur wenige Hochschulen in Deutschland. Sie ist die größte Universität Sachsens. Die große Campus-Familie der TU Dresden setzt sich zusammen aus rund 32.000 Studierenden und ca. 8.000 Mitarbeitern – davon 600 Professoren. Die TU Dresden ist seit 2012 eine der elf Exzellenzuniversitäten Deutschlands. Am 19. Juli 2019 konnte sie diesen Titel erfolgreich verteidigen.

Über die Die Professur für Holztechnik und Faserwerkstofftechnik
Die Professur für Holztechnik und Faserwerkstofftechnik, einschließlich der Arbeitsgruppe Papiertechnik, lehrt und forscht unter der Leitung von Professor André Wagenführ auf dem Gebiet der Werkstoffentwicklung und –verarbeitung. Dabei stehen Werkstoffe auf lignocelluloser Basis sowie aus anderen Naturfasern im Mittelpunkt der Forschung und Entwicklung aber auch in der Lehre. Neben relevanten Themen zur Gestaltung und Herstellung von unterschiedlich strukturierten Werkstoffen werden auch technologische Aspekte der Weiterverarbeitung und des Anlagen- und Maschinenbaus bis hin zur Werkzeugentwicklung untersucht. Einen Schwerpunkt bildet die Vergütung von bereits existierenden Werkstoffen wie bspw. natives Holz zur anwendungsbezogenen Eigenschaftsveränderung.

Wissenschaftliche Ansprechpartner:

Thomas Schrinner
Technische Universität Dresden
Institut für Naturstofftechnik
Professur für Holztechnik und Faserwerkstofftechnik
E-Mail: thomas.schrinner@tu-dresden.de
Telefon: +49 351 463-38026

http://www.tu-dresden.de

Media Contact

Konrad Kästner Pressestelle
Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…