Nano-Komposition: Neues Syntheseverfahren für Katalysator-Materialien
Seit 2011 beschäftigen sich Forschende am Institut für Experimentalphysik der TU Graz mit der gezielten Herstellung von Nanoclusterstrukturen.
Zum Einsatz kommt eine sogenannte „Pick-up“-Technik: Helium-Tröpfchen mit einer Temperatur nahe dem absoluten Nullpunkt sammeln Atome oder Moleküle aus einer Verdampfungsquelle auf, die im Inneren der Tröpfchen zu Nanopartikeln geformt werden.
Diese Methode nutzte ein Team des Instituts für Experimentalphysik rund um Institutsleiter Wolfgang Ernst und Andreas Hauser, um mit Vanadium-Oxiden zu experimentieren.
Dabei gelang den Wissenschaftlern ein Durchbruch in der Erforschung von Vanadiumpentoxid. Die Ergebnisse tragen zu einem besseren Verständnis katalytischer Prozesse sowie zur Verbesserung in der Herstellung sogenannter SCR-Katalysatoren (englisch: selective catalytic reduction) bei, wie sie beispielsweise in Industrieanlagen, Kraftwerken und Verbrennungsmotoren eingesetzt werden. Die Arbeit wurde jetzt im renommierten Journal der Royal Society of Chemistry Chemical Science veröffentlicht.
Ungewöhnliche Cluster-Sublimation von Vanadiumpentoxid
Vanadium-Oxide sind wesentlich für katalytische Prozesse. Sie reduzieren den Stickoxid-Gehalt in Abgasen und spielen auch bei der Oxidation von Kohlenwasserstoffen eine wichtige Rolle. Von allen Vanadium-Oxiden stellt Vanadiumpentoxid V2O5 die katalytisch wertvollste Verbindung mit Sauerstoff dar.
In ihren Untersuchungen ließen die Wissenschaftler am Institut für Experimentalphysik reines V2O5-Pulver verdampfen. Anschließend analysierten sie die sublimierten Partikel mit Hilfe der oben genannten Heliumtröpfchentechnik.
„Trotz jahrzehntelanger Untersuchungen von Vanadium-Oxiden war bislang nicht klar, ob einzelne V2O5-Moleküle abdampfen, ob auch Vanadium-Atome aus der Substanz austreten oder ob andere Fragmente mit unterschiedlichen Vanadium- und Sauerstoffanteilen zu beobachten sind“, erklärt Wolfgang Ernst. Ernst und Hauser konnten jetzt erstmals nachweisen, dass die Verdampfung bevorzugt in Einheiten von V4O10 erfolgt. Das heißt, es werden Dimere der molekularen Bausteine abgedampft, keine einzelnen V2O5-Moleküle.
Der Schlüssel für diese neuen Erkenntnisse liegt in der Analysemethode, wie Ernst erklärt: „Für eine akkurate Massenanalyse ist es wichtig, dass das Analyseverfahren selbst keine Fragmentation verursacht. Das ist bei traditionellen Massenanalysen sehr wahrscheinlich. Unsere ‚helium-mediated mass analysis‘ hingegen verhindert dieses ‚Fragmentieren per Methode‘.“
Überführung in die Industrie
Die Ergebnisse sind auch für die Katalyse-Industrie von großer Bedeutung, zumal die Grazer Wissenschafter mit ihren Messungen zeigen, dass sie Vanadiumoxid aufdampfen können, ohne das stöchiometrische Verhältnis zum Festkörper zu verändern. Das ist die Basis für ein neues Verfahren, bei dem metallische Nanopartikel mit V2O5-Partikeln beschichtet werden können.
Eine systematischere Herstellung von effizienteren und kostengünstigeren Katalysatormaterialien zur Stickoxid-Reduktion wäre damit möglich. Tests zu solchen Stickoxid-Reduktionen sowie Nachfolgeexperimente an Vanadium-Oxid beschichteten Metallclustern sind derzeit am Institut für Experimentalphysik im Gange.
Dieses Forschungsprojekt ist im Field of Expertise „Advanced Materials Science“ verankert, einem von fünf strategischen Schwerpunktfeldern der TU Graz, und wird vom österreichischen Forschungsfond FWF unter der Nummer PIR8-N34 gefördert.
Zur Originalpublikation „Vanadium(V) oxide clusters synthesized by sublimation from bulk under fully inert conditions“ in Chemical Science, 2019,10, 3473-3480: http://dx.doi.org/10.1039/C8SC05699D
Wolfgang E. Ernst
Univ.-Prof. Dipl.-Phys. Dr.rer.nat.
TU Graz | Institut für Experimentalphysik
Petersgasse 16, 8010 Graz
Tel. +43 316 873 5033
Email: wolfgang.ernst@tugraz.at
iep.tugraz.at
„Vanadium(V) oxide clusters synthesized by sublimation from bulk under fully inert conditions“ in Chemical Science, 2019,10, 3473-3480: http://dx.doi.org/10.1039/C8SC05699D
[DOI: 10.1039/c8sc05699d]
Media Contact
Weitere Informationen:
http://www.tugraz.atAlle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Neue Erkenntnisse zur Blütezeit-Regulation
Einfluss von Kohlenstoff- und Stickstoff-Signalwegen auf Blütenrepressoren bei Arabidopsis. In einer aktuellen Publikation in der Fachzeitschrift Plant Physiology hat ein internationales Forschungsteam, dem unter anderem Dr. Justyna Olas als eine…
Wenn Hepatitis-E-Viren Nervenzellen angreifen
Hepatitis-E-Viren (HEV) verursachen normalerweise Leberinfektionen. Sie können aber auch andere Organe befallen und insbesondere neurologische Erkrankungen auslösen. Über die Details ist noch wenig bekannt. Ein Forschungsteam um Michelle Jagst und…
Was T-Zellen im Tumor müde macht
Detaillierte Analyse im Journal Blood von Extramedullären Läsionen beim multiplen Myelom und neue Therapieansätze. Die extramedulläre Erkrankung (EMD) ist ein Hochrisikofaktor beim Multiplen Myelom. Angela Riedel und Leo Rasche vom…