Neuartige DLC-Oberflächen für verbesserte medizinische Implantate und weniger Revisionsoperationen

Hüftendoprothesen - hier Excia® T von Aesculap - sind eines der erfolgversprechenden Anwendungsgebiete für antimikrobielle DLC-Oberflächen. © B. Braun Melsungen AG/Sparte Aesculap

Einheilverhalten, Abrieb und Infektionsrisiko sind die Knackpunkte dauerhaft im Körper verbleibender Gelenkimplantate. Die maßgeblichen Implantateigenschaften durch Oberflächenmodifikationen entscheidend zu verbessern, ist das Ziel eines neuen, federführend an der Universität Augsburg und ihrem Anwenderzentrum für Material und Umweltforschung AMU angesiedelten Erkenntnistransferprojekts, das die Deutsche Forschungsgemeinschaft (DFG) jüngst genehmigt hat.

Projektpartner der Augsburger Biophysiker und Materialwissenschaftler sind Mediziner der TU München und der Universitätsmedizin Mannheim sowie die Aesculap AG, die als Sparte des B. Braun-Konzerns zu den führenden deutschen Herstellern medizinischer Implantate zählt.

Ausgangspunkt des neuen medizintechnologischen Transferprojekts, mit dem die DFG die bisherigen Erfolge einer engen Zusammenarbeit der Augsburger Materialwissenschaft und Biophysik mit Kollegen aus der medizinischen Forschung und Anwendung honoriert, sind die Ergebnisse ebenfalls DFG-geförderter Grundlagenforschungen, bei denen es der Arbeitsgruppe von Prof. Dr. Bernd Stritzker am Augsburger Lehrstuhl für Experimentalphysik IV gelungen war, durch Einlagerung von Silber-Nanopartikeln in diamantähnlichen Kohlenstoff eine antibakterielle Oberflächenmodifikation für medizinische Implantate zu entwickeln.

Antimikrobiell und biokompatibel

Biologische Untersuchungen am Klinikum rechts der Isar der TU München (PD Dr. med. Burgkart und Prof. Dr.med. Gollwitzer, Orthopädie und Sportorthopädie) sowie am Universitätsklinikum Mannheim (Prof. Dr. med. Stefan Schneider, Experimentelle Dermatologie) zeigten für klinisch relevante schädliche Keime eine deutlich wachstumshemmende antimikrobielle Wirkung der in der Augsburger Physik entwickelten DLC-Modifikation, die sich darüber hinaus durch eine weitere entscheidende Eigenschaft auszeichnet:

Wenige Stunden nach der Hüft- oder Kniegelenksoperation verliert die DLC-Oberfläche ihre während des Eingriffs enorm wichtige antibakterielle Wirkung und sorgt so für eine hervorragende Biokompatibilität des Implantats. Mit Blick auf die klinische Anwendung ist dieses Verhalten der Oberfläche ideal, da es in den kritischen Phasen während des operativen Eingriffs und unmittelbar danach Infektionen verhindert, das Einheilverhalten des Implantats anschließend aber in keiner Weise mehr beeinträchtigt.

Auf bewährte Implantat-Polymere übertragbar

Zwei weitere Vorteile kommen hinzu: Zum einen kann diese antimikrobiell wirksame Oberflächenmodifikation durch Ionenbestrahlung auf bewährte Implantat-Polymere übertragen werden, zum anderen können Tierversuche ersetzt werden, denn im Rahmen des Projekts werden die neuartigen Implantatoberflächen hinsichtlich des Anwachsverhaltens von Knochenzellen auf daumennagelgroßen Mikrofluidik-Chipsystemen charakterisiert., die speziell für diesen Zweck am Augsburger Experimentalphysik-Lehrstuhl I von Prof. Dr. Achim Wixforth entwickelt wurden.

„Jetzt geht es darum, die Erkenntnisse, die wir gewonnen haben, in der Praxis zu testen und auf Basis der Ergebnisse unserer Grundlagenforschung gemeinsam mit dem Anwendungspartner Aesculap AG im Erfolgsfall eine Endoprothese als Prototyp zu entwickeln“, erläutert Wixforth. Er hat die Projektleitung von seinem Kollegen Stritzker übernommen, der mittlerweile in Ruhestand getreten ist, das Projekt aber weiterhin wie bereits bei der Antragstellung mit Rat und Tat begleitet.

Optimierung unter realen Bedingungen

In Zusammenarbeit mit der Aesculap AG – Projektverantwortliche sind dort Dipl.-Ing. Melanie Holderied, T&D Biomechanics und PD Dr. med. habil. Dr.-Ing. Thomas Grupp, Director R&D – sollen die neuen Implantatoberflächen nun unter realen Bedingungen optimiert werden. „Wenn uns, wovon wir ausgehen, eine vollständige antimikrobielle Ausrüstung eines kompletten Implantats gelingen sollte, wird dies ein enormer, auf diesem Gebiet so noch nie dagewesener Fortschritt sein“, betont Stritzker. Denn ein verbessertes Einheilverhalten und ein reduzierter Abrieb bei künstlichen Gelenken, insbesondere aber auch eine verminderte Infektionsrate seien entscheidende Faktoren, mit denen sich eine deutlich längere Funktionsdauer der Implantate erreichen und die Zahl der Revisionsoperationen an betroffenen Patienten erheblich reduzieren lasse.

Insgesamt knapp 1,5 Millionen Euro

Die DFG fördert das medizinisch-physikalische Erkenntnistransferprojekt mit insgesamt gut 950.000 Euro, von denen rund 40 Prozent an die Arbeitsgruppen im Physik-Institut der Universität Augsburg gehen. Die Aesculap AG beteiligt sich ihrerseits mit Personal- und Sachmitteln in Höhe von weiteren ca. 520.000 Euro. Eine detaillierte Abstimmung der Forschungs- und Entwicklungsarbeiten sowie der zeitlichen Projektkoordination erfolgte bei einem Kick-Off-Meeting aller Projektpartner Ende Februar 2015 im Anwenderzentrum für Material- und Umweltforschung (AMU) der Universität Augsburg.

„Wir freuen uns“, so Stritzker, „dass es uns im AMU ein weiteres Mal gelungen ist, mit den Erkenntnissen aus einem erfolgreich abgeschlossenen DFG-Grundlagenprojekt eine renommierte Industriefirma so zu überzeugen und so stark zu interessieren, dass sie nun im Rahmen eines DFG-Erkenntnistransferprojekts unsere Forschung mit eigenen Geldern und Mitarbeitern synergetisch unterstützt.“

Ansprechpartner an der Universität Augsburg:

Prof. Dr. Achim Wixforth und Dr. Christoph Westerhausen
Lehrstuhl Experimentalphysik I
Telefon 0821/598-3300
achim.wixforth@physik.uni-augsburg.de
christoph.westerhausen@physik.uni-augsburg.de

Prof. Dr. Bernd Stritzker
Anwenderzentrum Material- und Umweltforschung (AMU)
Telefon 0821/598-3590
bernd.stritzker@physik.uni-augsburg.de

Media Contact

Klaus P. Prem idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-augsburg.de

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Klimawandel führt zu mehr alpinen Gefahren

Von Steinschlag bis Eislawine: So hat der Klimawandel die Naturgefahren in den Alpen verändert. Der Klimawandel intensiviert vielerorts Naturgefahren in den Bergen und stellt den Alpenraum damit vor besondere Herausforderungen….

SAFECAR-ML: Künstliche Intelligenz beschleunigt die Fahrzeugentwicklung

Mit neuen Methoden des Maschinellen Lernens gelingt es, Daten aus der Crashtest-Entwicklung besser zu verstehen und zu verarbeiten. Im Projekt SAFECAR-ML entsteht eine automatisierte Lösung zur Dokumentation virtueller Crashtests, die…

Robotergestütztes Laserverfahren ermöglicht schonende Kraniotomie im Wachzustand

Um während neurochirurgischen Eingriffen komplexe Hirnfunktionen testen zu können, werden diese an wachen, lokal anästhesierten Patienten durchgeführt. So können die Chirurgen mit ihnen interagieren und prüfen, wie sich ihr Eingriff…