Neuartiger Verbundwerkstoff soll Flugzeuge leichter machen

Sebastian Backe von der TU Kaiserslautern forscht an neuartigen Verbundwerkstoffen für die Flugzeugindustrie Koziel/ TU Kaiserslautern

Es ist ein recht sperriger Begriff: Kohlestofffaserverstärkter Kunststoff, kurz CFK. Um ihn kommen Konstrukteure aus der Automobil- oder der Sportgeräteindustrie schon jahrelang nicht mehr herum. Die Kohlenstofffasern sind zugfest und leicht zugleich.

Beim Auto zum Beispiel lässt sich auf diese Weise Gewicht und dadurch Sprit einsparen. Ein Aspekt, der auch für die Luftfahrtindustrie ein ganz wesentlicher ist. Denn es gilt: Je weniger Kilos mit in die Luft müssen, desto weniger Treibstoff wird verbraucht. Und damit sparen die Fluggesellschaften am Ende jede Menge Kosten.

„Kohlenstofffasern werden schon längst beim Flugzeugbau verwendet“, weiß Sebastian Backe, Doktorand am Lehrstuhl für Werkstoffkunde (WKK). „Das Problem ist aber, dass das Material nicht genügend elektrische Leitfähigkeit mitbringt.“ Damit Flugzeuge bei Gewittern nicht Gefahr laufen, Schaden zu nehmen, haben sie um den Rumpf ein Kupfernetz, das sie vor Blitzen schützt. „Das Netz verursacht allerdings zusätzliches Gewicht“, so Backe, der vor seiner Promotion Maschinenbau an der TU Kaiserslautern studiert hat.

Der Nachwuchsingenieur und seine Kollegen möchten dies ändern: Sie arbeiten an neuen Materialien, die sowohl stabil und leicht sind wie CFK, aber auch elektrisch leitfähig. Diese könnten dann in Flugzeugen verbaut werden. Ein Kupfernetz wäre nicht mehr notwendig, überflüssiges Gewicht könnte eingespart werden.

Am Institut für Verbundwerkstoffe (IVW) haben Backes Kollegen in den vergangenen Jahren bereits Vorarbeit geleistet und die neuartige Werkstoffvariante produziert. „Sie enthält neben Kohlenstofffasern auch dünne Stahlfasern“, berichtet Backe. „Das Material ist derart aufgebaut, dass die Stahlfasern in den äußeren Lagen des Materials liegen.“ Andere Anordnungen des Metalls und des Kunststoffs hätten sich in Experimenten als weniger geeignet erwiesen.

Im Rahmen seiner Promotion untersucht Backe nun die Eigenschaften dieses Verbundwerkstoffes. Damit der Werkstoff später überhaupt Chancen hat, in der Luftfahrt zum Einsatz zukommen, muss Backe ihn auf Herz und Nieren prüfen. Dazu ist eine Reihe von unterschiedlichen Tests notwendig. Das Material muss hierbei stets der kritischen Prüfung des Wissenschaftlers standhalten.

„Ich untersuche beispielsweise, wie sich die Eigenschaften des Materials in unterschiedlichen klimatischen Bedingungen verändern“, sagt der 28-Jährige. Er testet weiterhin, wie es um die elektrische Leitfähigkeit bestellt ist, ob das Material rostet oder was passiert, wenn es sich verformt – so etwas kann bei Flugzeugen immer wieder vorkommen, etwa bei Kollisionen oder Schlägen, wie es bei starkem Hagel der Fall sein kann. Auch in solchen Situationen muss sich das Material als stabil erweisen.

„Wir entwickeln an der TU Prototypmaterial, das hoffentlich später in den Unternehmen zum Einsatz kommt und weiterentwickelt wird“, so Backe. Bis das Material in der Luftfahrtindustrie zum Einsatz kommen könnte, ist es noch ein langer Weg. „Das dauert mindestens noch 15 Jahre“, schätzt Backe. Vielleicht arbeitet der angehende Ingenieur dann bei einem Flugzeugbauer, um den einst von ihm mitentwickelten Werkstoff in den Rumpf der nächsten Generation von Flugzeugen einzubauen.

Media Contact

Katrin Müller idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-kl.de

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen

An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…

Tsunami-Frühwarnsystem im Indischen Ozean

20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….

Resistente Bakterien in der Ostsee

Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…