Neue Materialien für nachhaltige Billigbatterien

Die Forschenden stellten im Labor Aluminium-Knopfbatterien her. Das Batteriegehäuse ist aus Edelstahl, das innen mit Titannitrid beschichtet ist, um es korrosionsbeständig zu machen. ETH Zürich / Kostiantyn Kravchyk

Für die Energiewende braucht es Technologien, um Strom aus erneuerbaren Energiequellen kostengünstig zwischenzuspeichern. Eine vielversprechende neue Möglichkeit sind Aluminiumbatterien. Sie bestehen aus billigen und in grossen Mengen vorkommenden Rohstoffen (siehe Kasten).

An der Erforschung und Entwicklung solcher Batterien sind auch Wissenschaftler von der ETH Zürich und der Empa um Maksym Kovalenko, Professor für anorganische Funktionsmaterialien, beteiligt. Diese Forscher haben nun zwei neue Materialien gefunden, welche die Entwicklung von Aluminiumbatterien entscheidend weiterbringen könnten.

Es handelt sich dabei einerseits um ein korrosionsbeständiges Material für die leitenden Teile der Batterie, andererseits um ein neuartiges Material für ihren Pluspol, das an vielfältige technische Anforderungen angepasst werden kann.

Aggressive Elektrolytflüssigkeit

Weil die Elektrolytflüssigkeit von Aluminiumbatterien äusserst aggressiv ist und beispielsweise rostfreien Stahl (sowie auch Gold und Platin) angreift, sind Wissenschaftler auf der Suche nach korrosionsbeständigen Materialien für die leitenden Teile solcher Batterien.

ETH-Professor Kovalenko und seine Kollegen sind in Titannitrid, einem keramischen Material mit ausreichend hoher Leitfähigkeit, fündig geworden. «Diese Verbindung besteht aus den sehr häufig vorkommenden Elementen Titan und Stickstoff und lässt sich einfach herstellen», erklärt Kovalenko.

Die Wissenschaftler haben im Labor erfolgreich Aluminiumbatterien mit leitenden Teilen aus Titannitrid hergestellt. Aus dem Material können auch dünne Filme hergestellt werden, und es eignet sich zur Beschichtung anderer Materialien. Daher wäre es laut Kovalenko auch denkbar, die Leiter aus einem herkömmlichen Metall herzustellen und sie mit Titannitrid zu beschichten oder gar Titannitrid-Leiterbahnen auf Kunststoff zu drucken.

«Die möglichen Anwendungen von Titannitrid bleiben dabei nicht auf Aluminiumbatterien beschränkt. Das Material könnte auch in anderen Batteriearten eingesetzt werden, zum Beispiel in solchen, die auf Magnesium oder Natrium basieren oder in Hochspannungs-Lithiumionenbatterien», sagt Kovalenko.

Alternative zu Graphit

Das zweite neue Material verwendeten die Forscher für die positive Elektrode (Pluspol) von Aluminiumbatterien. Während die negative Elektrode (Minuspol) bei solchen Batterien aus Aluminium ist, besteht die positive Elektrode in der Regel aus Graphit. Kovalenko und seine Mitarbeiter haben nun ein neues Material gefunden, mit dem sich in einer Batterie ähnlich viel Energie speichern lässt wie mit Graphit. Es handelt es sich um Polypyren, einen Kohlenwasserstoff mit kettenförmiger Molekülstruktur.

Insbesondere Materialproben, in denen sich die Molekülketten ungeordnet zusammenlagerten, erwiesen sich in Experimenten als ideal. «Zwischen den Molekülketten bleibt viel Platz. Die verhältnismässig grossen Ionen der Elektrolytflüssigkeit können daher gut in das Elektrodenmaterial eindringen und es laden», erklärt Kovalenko.

Zu den Vorteilen von Polypyren-haltigen Elektroden gehören, dass Wissenschaftler ihre Eigenschaften beeinflussen können, beispielsweise ihre Porosität. Das bietet die Möglichkeit, das Material optimal an die jeweiligen Anwendungen anzupassen. «Das bisher verwendete Graphit hingegen ist ein Mineral. Es lässt sich ingenieurtechnisch nicht verändern», so Kovalenko.

Sowohl Titannitrid als auch Polypyren sind biegsame Materialien und daher laut den Forschern für die Verwendung in sogenannten Pouch-Zellen (von einer flexiblen Folie umschlossenen Batterien) geeignet.

[Box:]

Batterien für die Energiewende

Immer mehr Strom wird aus Sonnen- und Windenergie hergestellt. Weil Strom jedoch auch dann benötigt wird, wenn die Sonne nicht scheint und kein Wind bläst, werden neue Technologien nötig, um diesen Strom kostengünstig zwischenzuspeichern, beispielswiese neue Batterietechnologien. Die existierenden Lithiumionenbatterien sind wegen ihres geringen Gewichts zwar optimal für die Elektromobilität. Allerdings sind sie ziemlich teuer und daher nicht geeignet für eine wirtschaftliche ortsgebundene Zwischenspeicherung in grossem Umfang.

Ausserdem ist Lithium auf der Erde verhältnismässig rar und schwierig zu gewinnen, ganz im Gegensatz zu Aluminium, Magnesium und Natrium. Batterien, die auf einem der letzteren drei Elemente beruhen, gelten daher als vielversprechende künftige Möglichkeit der ortsgebundenen Stromspeicherung. Solche Batterien werden jedoch erst erforscht und sind noch nicht im industriellen Einsatz.

Literaturhinweise

Walter M, Kravchyk KV, Böfer C, Widmer R, Kovalenko MV: Polypyrenes as High-Performance Cathode Materials for Aluminum Batteries. Advanced Materials 2018, 1705644, doi: 10.1002/adma.201705644 [http://dx.doi.org/10.1002/adma.201705644]

Wang S, Kravchyk KV, Filippin AN, Müller U, Tiwari AN, Buecheler S, Bodnarchuk MI, Kovalenko MV: Aluminum Chloride‐Graphite Batteries with Flexible Current Collectors Prepared from Earth‐Abundant Elements. Advanced Science 2018, 1700712, doi: 10.1002/advs.201700712 [http://dx.doi.org/10.1002/advs.201700712]

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2018/04/neue-mater…

Media Contact

Hochschulkommunikation Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Buntbarsche betreiben Brutpflege in 3D-gedruckten Muscheln

Zeit zum Auszug? Enthüllte Einblicke in die Brutpflege von Buntbarschen

Muschelbewohnende Buntbarsche kümmern sich intensiv um ihre Nachkommen, die sie in verlassenen Schneckenhäusern aufziehen. Ein Team des Max-Planck-Instituts für Biologische Intelligenz verwendete 3D-gedruckte Schneckenhäuser, um herauszufinden, was im Inneren passiert….

Amphiphil-angereichertes tragbares Gewebe, das Energie aus Bewegung erzeugt

Intelligente Textilien: Innovative bequeme Wearable-Technologie

Forscher haben neue Wearable-Technologien demonstriert, die sowohl Strom aus menschlicher Bewegung erzeugen als auch den Komfort der Technologie für die Träger verbessern. Die Arbeit basiert auf einem fortgeschrittenen Verständnis von…

Visualisierung der stabilen Atlantischen meridionalen Umwälzzirkulation (AMOC) über 60 Jahre

Stabilität bewahren – Studie zeigt, dass Golfstrom im Nordatlantik robust bleibt

Eine Studie der Universität Bern und der Woods Hole Oceanographic Institution in den USA kommt zu dem Schluss, dass die ozeanische Zirkulation im Nordatlantik, zu der auch der Golfstrom gehört,…