Neue Materialien mit ultrakalten Atomen untersuchen
Zukünftige Technologien von der Informationstechnik bis hin zur Hochtemperatursupraleitung erfordern neuartige Materialien mit maßgeschneiderten elektronischen Eigenschaften.
Mit einem neuartigen Quantensimulator aus ultrakalten Atomen in einem Lichtgitter können Wissenschaftler wie mit einem Baukasten neue Materialien erzeugen und untersuchen. Physikern des Forschungszentrums Jülich, der Universität Mainz und der Universität zu Köln gelang es jetzt sogar, mit dieser Versuchsanordnung eines der spektakulärsten elektronischen Phänomene darzustellen. Darüber berichtet die Fachzeitschrift „Science“ in ihrer aktuellen Ausgabe.
Die Untersuchung von komplexen Materialien wie Hochtemperatursupraleitern ist wegen der vorhandenen Unordnung und vieler konkurrierender Wechselwirkungen in echten kristallinen Materialien problematisch. „Dies macht es schwierig, die Rolle der spezifischen Wechselwirkungen zu bestimmen und insbesondere zu entscheiden, ob abstoßende Wechselwirkungen zwischen Elektronen allein die Hochtemperatursupraleitfähigkeit erklären können“, erläutert Dr. Theodoulos Costi vom Institut für Festkörperforschung des Forschungszentrums Jülich, Mitglied der Helmholtz-Gemeinschaft.
Atome in einem Lichtgitter können als Quantensimulator für eine Vielzahl von interessanten Phänomenen, wie dem oben beschriebenen dienen. Sie bieten ein flexibles Modellsystem in einer gut kontrollierten Umgebung und können beispielsweise Elektronen in fester, sogenannter kondensierter, Materie simulieren. Die Physiker bringen für ihr Verfahren ultrakalte Atome mit einem Lichtgitter in eine Kristallstruktur und schalten gezielt zwischen metallischen und isolierenden Zuständen.
Den Forschern gelang es, mit diesem Quantensimulator eines der spektakulärsten elektronischen Phänomene zu simulieren: Wenn die Wechselwirkungen zwischen den Elektronen zu stark werden, kann ein Metall plötzlich seine Leitfähigkeit verlieren. Der resultierende sogenannte Mott-Isolator ist wahrscheinlich das wichtigste Beispiel für einen Zustand starker elektronischer Wechselwirkungen in der Physik der kondensierten Materie, da er einen Ansatzpunkt für die Untersuchung des Quantenmagnetismus liefert. Darüber hinaus findet man diesen Isolatorzustand in unmittelbarem Zusammenhang mit der Hochtemperatursupraleitung.
Die Versuchsanordnung in Mainz erlaubt es, die Dichte der Atome und die Stärke der abstoßenden Wechselwirkung zwischen den Atomen unabhängig voneinander einzustellen. Durch die Untersuchung des Verhaltens der Atome bei steigendem Druck und verstärkten Wechselwirkungen gelang es den Experimentatoren um Prof. Immanuel Bloch der Johannes Gutenberg-Universität Mainz, den Mott-Isolator im Quantengas der Atome nachzuweisen.
Der Vergleich mit theoretischen Berechnungen von Gruppen in Jülich und Köln, die umfangreiche Simulationen an einem Jülicher Supercomputer erforderten, ergab eine ausgezeichnete Übereinstimmung zwischen Theorie und Experiment. Zudem zeigten die Forscher durch diese Berechnungen, dass eine unter der Abkürzung DMFT (Dynamische Molekularfeld-Theorie) bekannte Schlüsselmethode der Theorie der kondensierten Materie auch auf reale Systeme anwendbar ist. Die Forscher erwarten, dass ihre theoretischen und experimentellen Verfahren zur Untersuchung von Quanten-Vielteilchen-Zuständen in Lichtgittern schon bald von anderen Gruppen übernommen werden.
Original-Veröffentlichung:
Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice;
U. Schneider, L. Hackermueller, S. Will, Th. Best, I. Bloch, T. A. Costi, R. W. Helmes, D. Rasch und A. Rosch;
Science (5. Dezember 2008)
Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin,
Forschungszentrum Jülich, Institut für Festkörperforschung
52425 Jülich, Tel.: 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de
Weitere Informationen:
http://www.fz-juelich.de – Forschungszentrum Jülich
http://www.fz-juelich.de/iff/d_th3/ – Institut für Festkörperforschung (IFF-3)
http://www.fz-juelich.de/nic/ – John von Neumann-Institut für Computing (NIC)
http://www.fz-juelich.de/ias/ – Institute for Advanced Simulation
http://www.quantum.physik.uni-mainz.de/ – Ultrakalte Quantengase an der Johannes Gutenberg-Universität Mainz
http://www.thp.uni-koeln.de/ – Institut für Theoretische Physik an der Universität Köln
Media Contact
Weitere Informationen:
http://www.fz-juelich.deAlle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Stabilität bewahren – Studie zeigt, dass Golfstrom im Nordatlantik robust bleibt
Eine Studie der Universität Bern und der Woods Hole Oceanographic Institution in den USA kommt zu dem Schluss, dass die ozeanische Zirkulation im Nordatlantik, zu der auch der Golfstrom gehört,…
Einzellige Helden: Die Kraft der Foraminiferen im Kampf gegen Phosphatverschmutzung der Ozeane
Sogenannte Foraminiferen sind in allen Weltmeeren zu finden. Nun hat eine internationale Studie unter der Leitung der Universität Hamburg gezeigt, dass die Mikroorganismen, von denen die meisten Schalen tragen, Phosphat…
Menschen vs Maschinen – Wer ist besser in der Spracherkennung?
Sind Menschen oder Maschinen besser in der Spracherkennung? Eine neue Studie zeigt, dass aktuelle automatische Spracherkennungssysteme (ASR) unter lauten Bedingungen eine bemerkenswerte Genauigkeit erreichen und manchmal sogar die menschliche Leistung…