Optisch aktive Defekte verbessern Kohlenstoffnanoröhrchen
Heidelberger Wissenschaftlern gelingt Defekt-Kontrolle durch neuen Reaktionsweg.
Mit bewusst erzeugten strukturellen „Fehlstellen“ oder Defekten lassen sich die Eigenschaften von kohlenstoffbasierten Nanomaterialien verändern und verbessern. Dabei stellt es jedoch eine besondere Herausforderung dar, die Art und Anzahl der Defekte zu kontrollieren. Für Kohlenstoffnanoröhrchen – mikroskopisch kleine röhrenförmige Verbindungen, die Licht im nahen Infrarotbereich ausstrahlen – haben jetzt Chemiker und Materialwissenschaftler der Universität Heidelberg unter der Leitung von Prof. Dr. Jana Zaumseil einen neuen Reaktionsweg gefunden, der diese Kontrolle erlaubt. Erzeugt werden ausgewählte optisch aktive Defekte – sogenannte sp3-Defekte, die heller leuchten und einzelne Photonen, das heißt Lichtteilchen, aussenden. Eine solche effiziente Emission von Licht im nahen Infrarotbereich ist für Anwendungen in der Telekommunikation und für die biologische Bildgebung von Bedeutung.
Mit Defekten verbindet sich normalerweise die Vorstellung von etwas „Schlechtem“, das die Eigenschaften eines Materials beeinträchtigt, es weniger perfekt macht. Solche „Fehlstellen“ können bei bestimmten Nanomaterialien wie Kohlenstoffnanoröhrchen jedoch etwas „Gutes“ bewirken und neue Funktionalitäten ermöglichen. Die genaue Art der Defekte ist dabei entscheidend. Kohlenstoffnanoröhrchen bestehen aus einem aufgerollten hexagonalen Gitter von sp2-Kohlenstoffatomen, wie sie zum Beispiel auch in Benzol zu finden sind. Diese hohlen Röhrchen haben einen Durchmesser von etwa einem Nanometer und sind bis zu einige Mikrometer lang.
Einige wenige der sp2-Kohlenstoffatome des Gitters können durch chemische Reaktionen in sp3-Kohlenstoff – wie er in Methan oder Diamant vorkommt – umgewandelt werden. Dadurch ändert sich die lokale elektronische Struktur des Kohlenstoffnanoröhrchens und ein optisch aktiver Defekt wird erzeugt. Diese sp3-Defekte leuchten insgesamt heller und mit einer längeren Wellenlänge, also noch weiter im nahen Infrarot-Bereich, als die Nanoröhrchen, die nicht funktionalisiert wurden. Aufgrund der Geometrie der Kohlenstoffnanoröhrchen ist die genaue Position der erzeugten sp3-Kohlenstoffatome ausschlaggebend für die optischen Eigenschaften der Defekte. „Bisher war es jedoch kaum möglich zu kontrollieren, welche Art von Defekt gebildet wurde“, so Jana Zaumseil, die Professorin am Physikalisch-Chemischen Institut und Mitglied des Centre for Advanced Materials der Universität Heidelberg ist.
Die Heidelberger Wissenschaftlerin und ihr Team haben nun einen neuen Reaktionsweg gefunden, der die gezielte Erzeugung von nur einer bestimmten Art von sp3-Defekten erlaubt. Genau diese optisch aktiven Defekte sind „besser“ als die sonst erzeugten „Fehlstellen“. Sie leuchten nicht nur heller, sondern zeigen auch Einzelphotonenemissionen bei Raumtemperatur, wie Prof. Zaumseil erläutert. Dabei wird immer ein Lichtteilchen nach dem anderen ausgesendet, was die Voraussetzung für Quantenkryptographie und damit für besonders sichere Telekommunikation ist.
Nach den Worten von Simon Settele, Doktorand in der Forschungsgruppe von Prof. Zaumseil und Erstautor des zu diesen Forschungsergebnissen veröffentlichten Papers, ist die neue Funktionalisierungsmethode – eine nukleophile Addition – sehr einfach und kann ohne spezielle Geräte durchgeführt werden. „Wir haben gerade erst begonnen, die verschiedenen möglichen Anwendungen auszutesten. Viele chemische und photophysikalische Aspekte sind noch unbekannt. Das Ziel ist, noch bessere Defekte zu erzeugen.“
Die Forschungsarbeiten sind Teil des von Prof. Zaumseil geleiteten Projekts „Trions and sp3-Defects in Single-walled Carbon Nanotubes for Optoelectronics“ (TRIFECTs), das mit einem ERC Consolidator Grant des Europäischen Forschungsrates (ERC) gefördert wird. Im Mittelpunkt stehen dabei das Verständnis und die gezielte Veränderung der elektronischen und optischen Eigenschaften von Kohlenstoffnanoröhrchen.
„Die chemischen Unterschiede zwischen den Defekten sind sehr gering und die gewünschte Konfiguration wird meist nur bei einer Minderheit der Kohlenstoffnanoröhrchen gebildet. Die Möglichkeit, große Mengen an Nanoröhrchen mit einem spezifischen Defekt und mit einer kontrollierten Anzahl dieses Defekts zu erzeugen, eröffnet den Weg zu optoelektronischen Bauelementen und auch elektrisch angetriebenen Einzelphotonenquellen, die für zukünftige Anwendungen in der Quantenkryptographie benötigt werden“, so Prof. Zaumseil.
An den Forschungsarbeiten waren auch Wissenschaftler der Ludwig-Maximilians-Universität München und des Munich Center for Quantum Science and Technology beteiligt. Das Paper wurde in der Fachzeitschrift „Nature Communications“ veröffentlicht.
Bilderläuterung:
Die optischen Eigenschaften von Kohlenstoffnanoröhrchen, die aus einem aufgerollten hexagonalen Gitter von sp2-Kohlenstoffatomen bestehen, lassen sich mithilfe von Defekten verbessern. Ein neuer Reaktionsweg macht es möglich, nur ausgewählte optisch aktive sp3-Defekte zu erzeugen. Diese können einzelne Photonen im nahen Infrarotbereich auch bei Raumtemperatur aussenden.
Bildnachweis: Simon Settele (Heidelberg)
Kontakt:
Universität Heidelberg
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de
Wissenschaftliche Ansprechpartner:
Prof. Dr. Jana Zaumseil
Physikalisch-Chemisches Institut
Telefon (06221) 54-5065
zaumseil@uni-heidelberg.de
Originalpublikation:
S. Settele, F.J. Berger, S. Lindenthal, S. Zhao, A. Ali El Yumin, N.F. Zorn, A. Asyuda, M. Zharnikov, A. Högele & J. Zaumseil: Synthetic control over the binding configuration of luminescent sp³-defects in single-walled carbon nanotubes. Nature Communications (9 April 2021), https://doi.org/10.1038/s41467-021-22307-9
Weitere Informationen:
http://www.pci.uni-heidelberg.de/apc/zaumseil/ak_jz_trifects.html
Media Contact
Alle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen
Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…
Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen
Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…
Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität
HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…