Physiker entwickeln hauchdünne Supraleiter-Folie – neue Nano-Beschichtung auch für die Raumfahrt
Auf der Hannover Messe zeigen die Physiker vom 24. bis 28. April ihre Supraleiter-Folie und suchen Partner, mit denen sie diese für den praktischen Einsatz weiterentwickeln können: am saarländischen Forschungsstand (Halle 2, Stand B46).
Die Ergebnisse, bei denen das Team von Professor Uwe Hartmann mit Professor Volker Presser an der Saar-Uni und am Leibniz-Institut für Neue Materialien zusammengearbeitet hat, haben die Wissenschaftler in mehreren Artikeln in Fachmagazinen veröffentlicht: doi zu den Artikeln s.u.
Auf den ersten Blick sieht es recht unspektakulär aus, was die Experimentalphysiker der Saar-Uni entwickelt haben. Wie ein verkokeltes schwarzes Stück Papier. Aber das unscheinbare Blatt hat es in sich. Es ist ein „Supraleiter“. So dürfen sich nur Materialien nennen, die eine außergewöhnliche Fähigkeit besitzen: Bei knackig kalten Minus-Graden leiten sie elektrischen Strom widerstandslos und verlustfrei. Die Elektronen fließen ungehindert im vor Kälte erstarrten Atomgitter.
Mangels Widerstand überträgt sich auch das Feld eines Magneten wie ein Spiegelbild auf die frostigen Materialien. Bringt man Supraleiter und Magnet zusammen und kühlt alles mit flüssigem Stickstoff, stoßen sie sich ab: Der Magnet schwebt über dem Supraleiter. „Levitation“ nennen das die Forscher, nach dem lateinischen Wort levitas für Leichtigkeit. Der Laie denkt an das schwebende „Hoverboard“ aus der Filmreihe „Zurück in die Zukunft“ – nur fehlende Kälte kann das reibungslose Gleiten noch bremsen.
Heute übliche Supraleiter sind starr, spröde und haben eine hohe Dichte, was sie schwer macht. Die Saarbrücker Experimentalphysiker haben die supraleitenden Eigenschaften in eine dünne, anschmiegsame Folie gepackt. Der Stoff ist ein Gewebe aus Kunststoff-Fasern und Hochtemperatur-supraleitenden Nanodrähten.
„Das macht ihn formbar und anpassungsfähig wie Frischhaltefolie. Theoretisch könnte er in jeder Größe hergestellt werden. Hierzu benötigen wir weniger Ressourcen als die üblicherweise für Supraleiter verwendeten Keramiken, was das Geflecht auch günstiger macht“, erklärt Uwe Hartmann, Professor für Nanostrukturforschung und Nanotechnologie an der Saar-Uni.
Vor allem das geringe Gewicht der Folie ist ein Vorteil. „Mit einer Dichte von 0,05 Gramm pro Kubikzentimeter ist der Stoff sehr leicht, das ist etwa ein Hundertstel eines herkömmlichen Supraleiters. Damit ist er interessant überall dort, wo es auf Gewicht ankommt. Zum Beispiel in der Weltraumtechnik. Auch in der Medizintechnik könnte er zum Einsatz kommen“, erklärt Hartmann. Als neuartige Beschichtung könnte er bei kalten Temperaturen elektromagnetische Felder abschirmen, in flexiblen Kabeln zum Einsatz kommen oder für reibungsfreies Gleiten sorgen.
Um den neuartigen Stoff zu weben, haben die Experimentalphysiker ein Verfahren genutzt, das sich „Elektrospinnen“ nennt und üblicherweise für Kunststoffe (Polymere) zum Einsatz kommt. „Wir pressen dabei einen flüssigen Ausgangsstoff durch eine sehr feine Düse, die unter elektrischer Spannung steht. Heraus kommen Nanodraht-Fäden, die tausendmal dünner sind als ein Haar – etwa 300 Nanometer und weniger. Danach erhitzen wir das Geflecht so, dass Supraleiter in der richtigen Zusammensetzung entstehen. Sie bestehen aus Yttrium- Barium-Kupfer-Oxid oder aus ähnlichen Verbindungen“, erläutert Dr. Michael Koblischka, Wissenschaftler in Hartmanns Arbeitsgruppe.
Die VolkswagenStiftung förderte diese Forschung der Experimentalphysiker im Rahmen von „Experiment!“ mit 100.000 Euro. Diese Initiative unterstützt Forschungs-Ideen mit ungewissem Ausgang und hohem Forschungsrisiko. Ein Konzept, das im Falle der Saarbrücker Physiker aufging. Seit September 2016 fördert die Deutsche Forschungsgemeinschaft ein Projekt für drei Jahre mit rund 425.000 Euro, bei dem die Forscher die Eigenschaften der Nanodrähte näher untersuchen.
Weitere Pressefotos für den kostenlosen Gebrauch finden Sie unter
http://www.uni-saarland.de/pressefotos. Bitte beachten Sie die Nutzungsbedingungen.
Kontakt:
Prof. Dr. Uwe Hartmann: Tel.: (0681) 302-3799; E-Mail: u.hartmann@mx.uni-saarland.de
Dr. Michael Koblischka: (0681) 302-4555; E-Mail: m.koblischka@mx.uni-saarland.de
Dr. Haibin Gao Tel: (0681) 302-3654; E-Mail: h.gao@mx.uni-saarland.de
Der saarländische Forschungsstand ist während der Hannover Messe erreichbar unter Tel.: 0681-302-68500.
Veröffentlichungen der Arbeitsgruppe zum Thema:
doi: 10.1088/1361-6668/aa544a in Superconductor Science and Technology 30 (2017) 035014,
doi: 10.1109/TASC.2016.2542139 in IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY 26, 1800605 (2016),
doi: 10.1063/1.4944747 in AIP Advances 6, 035115 (2016),
doi: 10.1088/2053-1591/2/9/095022 in Materials Research Express 2 (2015) 095022,
Hinweis für Hörfunk-Journalisten: Telefoninterviews in Studioqualität möglich über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681/302-64091 oder -2601).
Hintergrund:
Der saarländische Forschungsstand wird organisiert von der Kontaktstelle für Wissens- und Technologietransfer der Universität des Saarlandes (KWT). Sie ist zentraler Ansprechpartner für Unternehmen und initiiert unter anderem Kooperationen mit Saarbrücker Forschern. http://www.uni-saarland.de/kwt
Media Contact
Alle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Spezielle Beschichtungen auf der ISS im Test
Montanuniversität Leoben bringt Innovation ins All: Ein bedeutender Schritt für die Weltraumforschung und die Montanuniversität Leoben: Nach langen Vorbereitungsarbeiten sind hochentwickelte Dünnfilmbeschichtungen aus Leoben nun auf der Internationalen Raumstation (ISS)…
Holzfeuerungen mit bis zu 80% weniger NOx-Emissionen
Fraunhofer Forscher haben gemeinsam mit dem Projektpartner Endress Holzfeuerungen eine neuartige Feuerungstechnik entwickelt, die NOx-Emissionen um bis zu 80 Prozent reduzieren kann. Damit können auch zukünftige Grenzwerte zuverlässig eingehalten werden….
Ein neues Puzzlestück für die Stringtheorie-Forschung
Wissenschaftlerin vom Exzellenzcluster Mathematik Münster beweist Vermutung aus der Physik. Dr. Ksenia Fedosova vom Exzellenzcluster Mathematik Münster hat mit einem internationalen Forschungsteam eine Vermutung aus der Stringtheorie bewiesen, die Physikerinnen…