Reizbare Fasern
Eine hauchdünne Faser, die elektrische Leitfähigkeit, Elektroaktivität und Biokompatibilität kombiniert: So soll das Produkt aussehen, an dem Wissenschaftler der Universität und des Universitätsklinikums Würzburg sowie des Imperial College London in den kommenden drei Jahren arbeiten.
Die entsprechenden 3D-gedruckten, elektroaktiven und biokompatiblen Polymermikrofasergerüste sollen beispielsweise in der regenerativen Medizin zum Einsatz kommen. Aber auch andere Anwendungen, beispielsweise in der Robotik und Sensorik, sind denkbar.
Experten aus Würzburg und London
Sprecher des Forschungsverbunds ist Paul Dalton, Professor für Biofabrikation am Lehrstuhl für Funktionswerkstoffe in der Medizin und der Zahnheilkunde des Würzburger Universitätsklinikums. Dalton ist der international führende Pionier auf dem Gebiet des sogenannten Melt Electrospinning Writings (MEW) – einer Technik, bei der Polymere in einem elektrischen Feld zu extrem dünnen Fäden gesponnen und gleichzeitig zu feinen Gittern und Gerüsten angeordnet werden.
Zweiter Beteiligter ist Robert Luxenhofer, Professor für polymere Funktionswerkstoffe am Lehrstuhl für Chemische Technologie der Materialsynthese der Universität Würzburg. Er ist Experte für biokompatible Beschichtungen und weiß, wie künstliches Material aussehen muss, damit sich Zellen auf ihm wohlfühlen.
Die Dritte im Bund ist Dr. Rylie Green, Wissenschaftlerin am Department of Bioengineering der Faculty of Engineering des Imperial College London. Ihre Spezialität ist die Herstellung von elektrisch leitfähigen Polymeren und Biomaterialien.
An der Schnittstelle von Makro- und Nano-Welt
Mit rund 700.000 Euro finanziert die Volkswagen-Stiftung das Forschungsprojekt in den kommenden drei Jahren. Ziel der Initiative ist die „Verknüpfung molekularer oder nanoskaliger Einheiten zu komplexeren Funktionssystemen mit makroskopisch nutzbaren Effekten“, wie die Stiftung schreibt.
Zwar entwickeln Wissenschaftler seit etlichen Jahren schon neue Materialien und Komponenten mit herausragenden Eigenschaften im Nanometerbereich. „Bislang sind dies vor allem Einzelkomponenten, während größere Anwendungen basierend auf diesen Bausteinen immer noch die Ausnahme bilden“, so die Stiftung. Mit ihrer Förderinitiative will sie dazu beitragen, „die fehlende Schnittstelle zwischen der makroskopischen und der Nano-Welt zu schaffen“.
„Unser Ziel ist es, wenige Mikrometer große Objekte zu erzeugen, die sich bewegen können, wenn sie elektrisch stimuliert werden“, beschreibt Paul Dalton das Vorhaben des neuen Forschungsverbunds. Erforderlich dafür sei die Kombination von leitfähigen Polymeren, aktuellen materialwissenschaftlichen Erkenntnissen und einer fortgeschrittenen 3D-Drucktechnik. Nur durch geschickte Kombination dieser Techniken und Materialien ließe sich diese Herausforderung bewältigen.
Muskelfasern aus dem Labor
Eine Faser, die sich zusammenziehen und wieder ausdehnen kann, wenn sie elektrisch stimuliert wird: Wer dabei an einen künstlichen Muskel denkt, liegt nicht völlig falsch. „Solch ein Ziel liegt allerdings noch in einiger Ferne“, sagt Robert Luxenhofer. Trotzdem soll die Entwicklung der Forscher aus Würzburg und London in absehbarer Zeit in der regenerativen Medizin zum Einsatz kommen.
„Damit sich Zellen im Labor zu speziellen Geweben oder Organen entwickeln, benötigen sie unter anderem eine Umgebung, die der natürlichen möglichst ähnlich ist“, sagt Robert Luxenhofer. Damit aus Muskelzellen Muskelstränge werden, müssen demnach regelmäßig Kräfte auf die Zellen einwirken, die sie mal dehnen, mal stauchen. Oder, anders formuliert: Sie brauchen dauerhaft mechanischen Stress. Das könnten in Zukunft die Gerüste leisten, an denen die drei Wissenschaftler nun arbeiten.
Weitere Einsatzgebiete
Weitere Einsatzgebiete solch elektroaktiver Gewebe sind mikroskopische Sensoren. Dort können sie bei minimalstem Platzaufwand, beispielsweise eingebettet in künstliche Haut, dafür sorgen, dass Roboter in Zukunft besser fühlen können.
„Coaxial 3D printing of actuating electroactive scaffolds for muscle regeneration“: So lautet der genaue Titel des neuen Forschungsprojekts. Paul Dalton ist sich ziemlich sicher, dass am Ende ein „radikal neues funktionales makroskopisches System“ stehen wird, dessen Einsatzmöglichkeiten heute noch gar nicht überschaubar sind.
Kontakt
Prof. Dr. Paul Dalton, T: (0931) 201-74081, paul.dalton@fmz.uni-wuerzburg.de
Prof. Dr. Robert Luxenhofer, T: (0931) 31-89930, robert.luxenhofer@uni-wuerzburg.de
Media Contact
Alle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Sensoren für „Ladezustand“ biologischer Zellen
Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…
Organoide, Innovation und Hoffnung
Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…
Leuchtende Zellkerne geben Schlüsselgene preis
Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…