Schnellster hochpräziser 3D-Drucker
Um nicht nur die Geschwindigkeit, sondern auch die Zuverlässigkeit ihres Aufbaus zu demonstrieren, haben die Forscherinnen und Forscher eine 60 Kubikmillimeter große Gitterstruktur mit Details bis in den Mikrometermaßstab gedruckt, die mehr als 300 Milliarden Voxel enthält.
(Ein Voxel ist das dreidimensionale Analogon des Pixels im 2D-Druck).
„Mit dem Druck dieses Metamaterials schlagen wir den Rekord, der bei 3D-gedruckten Flugzeugflügeln erreicht wurde, um Längen – ein neuer Weltrekord“, erklärt Professor Martin Wegener, Sprecher des Exzellenzclusters „3D Matter Made to Order“ (3DMM2O), in dessen Rahmen das System entwickelt wurde.
Bei dieser Art von 3D-Druck durchfährt der Lichtfleck eines Lasers computergesteuert einen flüssigen Fotolack. Nur das Material im Brennpunkt des Lasers wird dabei belichtet und ausgehärtet.
„Die Brennpunkte entsprechen den Düsen beim Tintenstrahldrucker, mit dem Unterschied, dass sie dreidimensional arbeiten“, sagt Vincent Hahn, Erstautor der Publikation. So entstehen hochpräzise filigrane Strukturen für verschiedene Einsatzbereiche wie Optik und Photonik, Materialwissenschaften, Biotechnologie oder Sicherheitstechnik.
Typischerweise konnte man bisher mit einem einzigen Laserlichtfleck einige Hundert Tausend Voxel pro Sekunde erzeugen. Er war damit fast hundertmal langsamer als grafische Tintenstrahldrucker. Dieser Umstand hat bislang viele Anwendungen behindert.
Wissenschaftlerinnen und Wissenschaftler des KIT und der Queensland University of Technology (QUT) in Brisbane/Australien haben nun innerhalb des Exzellenzclusters 3DMM2O ein neues System entwickelt. Mit einer speziellen Optik wird der Laserstrahl in neun Teilstrahlen aufgeteilt, die jeweils in einen Brennpunkt gebündelt werden.
Alle neun Teilstrahlen können parallel verwendet und inzwischen, dank verbesserter elektronischer Ansteuerung, auch deutlich schneller als zuvor präzise verfahren werden.
Mit einigen weiteren technischen Verbesserungen kommen die Forscher im 3D-Druck so auf Druckgeschwindigkeiten von etwa zehn Millionen Voxel pro Sekunde und sind damit nun gleichauf mit grafischen 2D-Tintenstrahldruckern. Dennoch geht die Forschung und Entwicklung am KIT mit Hochdruck weiter.
„Schließlich will man mit 3D-Druckern nicht nur das Pendant eines Blattes, sondern dicke Bücher ausdrucken“, so Hahn. Hierzu seien insbesondere auch Fortschritte in der Chemie erforderlich, beispielsweise müssten empfindlichere Fotolacke entwickelt werden, um mit der gleichen Laserleistung noch mehr Brennpunkte erzeugen zu können.
Originalpublikation
Vincent Hahn, Pascal Kiefer, Tobias Frenzel, Jingyuan Qu, Eva Blasco, Christopher Barner-Kowollik and Martin Wegener: „Rapid assembly of small materials building blocks (voxels) into large func-tional 3D metamaterials“. Advanced Functional Materials, 10.1002/adfm.201907795.
https://onlinelibrary.wiley.com/doi/10.1002/adfm.201907795
Details zum KIT-Zentrum Materialforschung: http://www.materials.kit.edu/index.php
Weiterer Pressekontakt: Regina Link, Redakteurin/Pressereferentin
Tel.: +49 721 608-21158, regina.link@kit.edu
Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 24 400 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.
http://www.kit.edu/kit/pi_2020_007_schnellster-hochpraziser-3d-drucker.php
Media Contact
Alle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Selen-Proteine …
Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…
Pendler-Bike der Zukunft
– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…
Neuartige Methode zur Tumorbekämpfung
Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…