Supraschmierung für neue Gleitlager in die Anwendung bringen
20 Prozent der weltweit erzeugten Energie geht durch Reibung verloren.
Mit neuen Materialien, Oberflächen und Schmierstoffen könnten langfristig 40 Prozent davon eingespart werden – das entspricht CO2-Emissionen von mehr als drei Gigatonnen pro Jahr! Einen Weg dorthin eröffnet die Supraschmierung in Maschinenelementen. Fraunhofer-Forschende arbeiten gemeinsam mit Industriepartnern daran, diese vom Labor in die Anwendung zu bringen.
In technischen Anlagen wird Reibung vielfach über Wälz- oder Gleitlager reduziert: Gleitlager punkten mit einem einfachen Aufbau und niedrigen Kosten, weisen allerdings Reibwerte von ca. 0,1 auf und eine sinkende Energieeffizienz bei höheren Drehzahlen. Wälzlager kommen zwar auf Reibwerte von lediglich 0,01, jedoch sind sie komplizierter aufgebaut, lauter und teurer. Daher greifen Konstrukteure – den höheren Reibwerten zum Trotz – vielfach auf die einfacheren Gleitlager zurück.
Eine Lösung, damit Gleitlager ebenso ressourceneffizient wie Wälzlager werden, könnte künftig die Supraschmierung sein: Sind Materialien, Oberflächen und Schmierstoff sehr gut aufeinander abgestimmt, werden extrem niedrige Reibwerte realisierbar. Bislang lassen sich suprageschmierte Modellsysteme im Labor realisieren. Die Herausforderung ist deren Langzeit- und Temperaturstabilität unter Praxisbedingungen. Auch sind vielfach spezielle Materialien notwendig, die nur unter einer bestimmten Gasatmosphäre stabil sind.
Supraschmierung für die Anwendung
Forschende der Institute Fraunhofer IWM, IWS, IKTS und IPA arbeiten im Projekt »SupraSlide« daran, die Supraschmierung vom Labor in die Anwendung zu bringen – in enger Wechselwirkung mit Industrieunternehmen. »Unser Ziel ist, in verschiedenen Anwendungen Supraschmierung zu erreichen. Ganz konkret wollen wir mit einfach aufgebauten und kostengünstigen Gleitlagern Reibwerte erzielen, die diejenigen der Wälzlager erreichen oder sogar noch darunter liegen«, sagt Dr. Tobias Amann, stellvertretender Gruppenleiter am Fraunhofer IWM. Reibwerte von 0,01 oder noch geringer sind das Ziel. Würde man einen solchen Reibwert auf eine Platte übertragen, auf der ein fünf Tonnen schwerer Elefant steht, könnte ein Mensch den Dickhäuter samt Platte mühelos verschieben.
Reibung, vor allem geringe Reibung, ergibt sich aus dem Zusammenspiel aller beteiligten Komponenten – also der Reibkörper, der Oberflächenbeschichtung und des Schmierstoffes. Um diese Komponenten für die Supraschmierung in einem Gesamtsystem perfekt aufeinander abzustimmen, sind viele Kompetenzen erforderlich. »Die Expertise aus den beteiligten Fraunhofer-Instituten ergänzt sich optimal«, sagt Amann. Die Institute Fraunhofer IKTS und IWM arbeiten an der Entwicklung, Herstellung und Charakterisierung geeigneter keramischer Werkstoffe.
Die Institute Fraunhofer IWM und IWS sorgen für diamantähnliche Kohlenstoffschichten, mit denen die Gleitlager-Oberflächen beschichtet werden. Bei den Schmierstoffen setzt das Team auf nachhaltige, wasserbasierte Schmierstoffe wie Glycerol und Polyethylenglykole. An den beiden Instituten werden die nötigen tribologischen Tests durchgeführt, während das Fraunhofer IPA die Demonstratoren entwickelt und evaluiert. Um die Reibungsmechanismen gezielt beeinflussen zu können, müssen diese bis auf die atomare Ebene verstanden werden.
»Die Grenzfläche, in der die Reibung im Gleitlagerbetrieb auftritt, ist experimentell sehr schwer zu analysieren«, erläutert Dr. Gianpietro Moras, Gruppenleiter am Fraunhofer IWM. »Daher brauchen wir multiskalige Simulationen, mit denen wir chemische Prozesse oder tribologische Mutationen an der Oberfläche aufklären. Welche Parameter begünstigen die niedrigen Reibkoeffizienten und warum tun sie das?«
Baukasten für Supragleiter und drei Demonstratoren
Erste vielversprechende Ergebnisse hat das Forschungsteam bereits erzielt. »Wir haben unterschiedliche Material- und Schmierstoffkombinationen identifiziert, die bei einem breiten Lastkollektivfenster Supraschmierung erreicht haben und konnten dieses Reibniveau stabil über einen längeren Versuchszeitraum aufrecht halten. Den Schritt vom Modellversuch in den anwendungsnahen Versuch für ein axiales Gleitlager haben wir bereits gemeistert«, fasst Moras zusammen. Zum Projektende im Frühjahr 2024 soll zum einen ein Baukasten für Supragleitlager stehen, die eine Energieersparnis zu herkömmlichen Gleitlagern von 90 Prozent ermöglichen, und zum anderen drei suprageschmierte Demonstratoren: Die Achse eines Elektromotors für E-Bikes, eine Pumpe mit entsprechenden Gleitlagern und Gleitringdichtungen sowie ein Positionierungssystem für die Robotik.
Wissenschaftliche Ansprechpartner:
Dr. Gianpietro Moras, Fraunhofer-Institut für Werkstoffmechanik IWM
E-Mail: gianpietro.moras@iwm.fraunhofer.de
Dr. Tobias Amann, Fraunhofer-Institut für Werkstoffmechanik IWM
E-Mail: tobias.amann@iwm.fraunhofer.de
Weitere Informationen:
https://www.iwm.fraunhofer.de/de/presse/pressemitteilungsliste/23_11_22_suprasch… Webseite zur Presseinformation
Media Contact
Alle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Wirksamkeit von Metformin zur primären Krebsprävention
Eine Studie der Deutschen Krebshilfe bietet Menschen mit Li-Fraumeni-Syndrom neue präventive Strategien: Forschende der Medizinischen Hochschule Hannover (MHH) untersuchen in einer neuen Wirksamkeitsstudie erstmals, ob das krebsfreie Überleben bei LFS-Betroffenen…
Innovative Algorithmen für eine nachhaltige und flexible KI
Die Entwicklung und der Einsatz künstlicher Intelligenz verschlingen jede Menge Ressourcen. Das neue BMBF-geförderte Forschungsprojekt COMFORT will das ändern. Verantwortlich dafür ist der Würzburger Mathematiker Leon Bungert. Keine Frage: Das…
Neue Rezeptur für Gleistragplatten
Mit einem Material aus recycelten Kunststoffen und alten Rotorblättern soll die betonlastige Eisenbahninfrastruktur in Deutschland modernisiert werden. Sie unterhalten sich über Mischungen, Mischungsverhältnisse und Zusatzstoffe und es klingt, als seien…