Textilforscher veröffentlichen in Science – Nylon als Katalysatorträger

Wissenschaftler des Deutschen Textilforschungszentrums Nord-West (DTNW), einem An-Institut der Universität Duisburg-Essen (UDE), und des Max-Planck-Instituts für Kohlenforschung in Mülheim haben nun erstmals eine Methode zur Wiederverwendung organischer Katalysatoren entwickelt und die Ergebnisse in Science veröffentlicht. Nylon spielt dabei eine entscheidende Rolle.

Je nach vermittelter Reaktion weisen Katalysatoren unterschiedliche Zusammensetzungen und Formen auf: Vom komplizierten Eiweißmolekül im Körper, dem Enzym, über das robuste Bauteil auf Edelmetall-Basis im Auto bis hin zu pulverförmigen oder flüssigen Substanzen, die zu laufenden Prozessen hinzugefügt werden.

In der sogenannten „homogenen Katalyse“, die beispielsweise in der Pharmaindustrie häufig genutzt wird, liegen sowohl die Katalysatorsubstanzen als auch die Ausgangsstoffe in der gleichen Form vor, z.B. beide gelöst in einer Flüssigkeit. Nun wird ein Katalysator während der Reaktion, die er vermittelt, nicht aufgebraucht. Das Resultat ist daher in diesem Fall immer eine Mischung aus dem gewünschten Produkt und den Katalysatorsubstanzen. Letztere müssen deshalb immer wieder aufwendig separiert werden oder bleiben – wenn sie günstig sind und sich nicht nachteilig auswirken – im Produkt.

Prof. Dr. Jochen Gutmann bringt durch seine Arbeit am DTNW und am Center for Nanointegration Duisburg-Essen (CENIDE) die ideale Erfahrungskombination mit, um eine praktischere Alternative zu entwickeln: Zusammen mit Prof. Dr. Benjamin List vom Max-Planck-Institut für Kohlenforschung (MPI KoFo) in Mülheim an der Ruhr verwendet er Nylon, wie es auch für Feinstrumpfhosen genutzt wird, als Trägermaterial für organische Katalysatoren in Molekülform. Dazu bestrahlen die Wissenschaftler Textil und Moleküle mit UV-Licht. Dadurch öffnen sich Bindungen an der Nylonoberfläche, an die sich die kleinen Katalysatoren fest andocken.

Diese neuen Bindungen sind extrem stark, Chemiker sprechen von „kovalenten Bindungen“. So ergibt sich eine Oberfläche, die mit einer etwa 5 bis 10 Nanometer dicken Schicht aktiver Moleküle besetzt ist. „Nicht gebundene Katalysatoren können wir einfach wieder abwaschen und beim nächsten Mal wiederverwenden“, erklärt Gutmann. Das Projekt „Organokatalyse“ wird von der Arbeitsgemeinschaft industrieller Forschungsvereinigungen Otto von Guericke e.V. gefördert.

Das textile System hat zwei entscheidende Vorteile: Erstens lassen sich die Katalysatoren ganz einfach am Nylon aus dem Produkt herausziehen und sofort wiederverwenden – ohne vorherige Reinigungsprozedur. Zweitens bleiben keine Rückstände der Katalysatoren im Produkt zurück. Das kann gerade in der Pharmaindustrie, wo es mitunter auf hochreine Wirkstoffe ankommt, enorm wichtig sein. Auf die katalytische Aktivität hat die Fixierung übrigens keinen Einfluss – weder generell noch nach einiger Zeit: „Auch nach 250 Katalyse-Zyklen haben wir keine nennenswerten Veränderungen in der durchweg hohen Leistung feststellen können“, berichtet Gutmann. Sogar die Katalysatormenge auf dem Textil ist ganz einfach einzustellen: Je dünner die Nylonfasern, desto größer die Oberfläche, die für Bindungen zur Verfügung steht.

Nur wenig mehr als ein Jahr haben die Wissenschaftler für diese Entwicklung gebraucht – quasi ein Wimpernschlag in der Forschung. Und das nächste gemeinsame Ziel steht für Gutmann auch schon fest: „Zusammen mit den Kollegen vom MPI wollen wir auch andere Arten von Katalysatoren auf Textilien fixieren.“

Hinweis für die Redaktion:
Ein Bild von Fasergebundenen Biokatalysatoren bei der Arbeit (Fotonachweis: Klaus Opwis, DTNW, Krefeld) stellen wir Ihnen unter folgendem Link zur Verfügung: http://www.uni-due.de/de/presse/pi_fotos.php
Redaktion und weitere Informationen:
Birte Vierjahn, Tel. 0203/379-8176, birte.vierjahn@uni-due.de

Media Contact

Katrin Koster idw

Weitere Informationen:

http://www.uni-due.de

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…