Warum Knochen versagen

Osteoporose ist eine Volkskrankheit. Jede dritte Frau und jeder fünfte Mann sind mit fortschreitendem Alter von Knochenschwund betroffen. Eine häufige Folge davon ist der Oberschenkelhalsbruch – eine schmerzhafte Verletzung, die die Lebensqualität der Betroffenen massiv beeinträchtigt.

Die Patienten müssen mit langfristigen Mobilitätseinbussen rechnen. Lange Bettruhe und ein damit verbundener oft schlechter Allgemeinzustand führen gar zu einer erhöhten Sterblichkeit.

Die Krankheit bewirkt einen Schwund der Knochenmasse aufgrund eines Ungleichgewichts im natürlichen Umbauprozess im Gewebe sowie von Änderungen der Knochenqualität. Diese Änderungen betreffen die Mikrostruktur, die Dichte von Mikrorissen und Gewebeeigenschaften.

Knochen haben einen äusserst komplexen Aufbau. Sägt man beispielsweise einen Oberschenkelknochen auf, erkennt man, dass er aus einer harten Aussenschicht und einer porösen Füllung besteht. Unter dem Mikroskop sind innerhalb der harten Schale wiederum zylindrische Strukturen aus konzentrischen Lamellen erkennbar, die um zentrale Blutgefässe angeordnet sind.

Diese einzelnen Lamellen sind nur wenige tausendstel Millimeter dick und bestehen aus einer Art natürlichem Faserverbundwerkstoff: Kollagenfasern, in die Mineralpartikel eingelagert sind, eingebettet in einer proteinhaltigen, mineralischen Matrix. Dabei gilt: Je höher die Mineralisierung, desto steifer, aber auch bruchanfälliger ist der Knochen.

Dieser hierarchische Aufbau erlaubt es den Knochen, trotz relativ geringer Dichte robust und widerstandsfähig zu sein. Wenn Knochen brechen, dann reicht es daher aber auch nicht, nur die Dichte und Struktur des Knochens auf Makroebene zu betrachten – für den Bruch sind Mechanismen in allen Skalenbereichen verantwortlich.

Werkstoffanalysen für Knochen

Eine Forschungsgruppe an der Empa in Thun unter der Leitung von Jakob Schwiedrzik hat es sich zum Ziel gesetzt, das Versagen der Knochen auf Lamellenebene besser zu verstehen.

«Wenn man nur die Knochendichte betrachtet, wie das im klinischen Alltag heute meist der Fall ist, kann man das Bruchrisiko für Patienten im Mittel relativ gut vorhersagen. Im Einzelfall können die Resultate jedoch stark davon abweichen, und das effektive Frakturrisiko könnte falsch eingeschätzt werden,» erklärt Schwiedrzik.

«Wir hoffen, dass wir dank unserer Forschung künftig genauere Voraussagen für jeden einzelnen Patienten machen können.» Dafür verwenden die Forschenden Methoden, die eigentlich in der Werkstoffforschung zu Hause sind: Sie setzen kleinste Proben aus Knochenmaterial, die nur eine einzelne Lamelle enthalten, Zug- und Druckversuchen aus.

Dabei untersuchen sie, wie das Material versagt und wie die gemessenen Eigenschaften mit der zugrunde liegenden Mikrostruktur zusammenhängen. Bei der Mikrostrukturanalyse werden die sogenannte Raman-Spektroskopie sowie Transmissionselektronenmikroskope eingesetzt – hochkomplexe Instrumente, die es erlauben, Strukturänderungen in den Versuchsobjekten genau zu beobachten.

Bei den Druck- und Zugversuchen an den Knochenproben müssen die Forschenden aber noch selbst Hand anlegen: «Im Moment benötigen die Herstellung und die Versuche mit einem einzigen Knochensample noch sehr viel Zeit – insbesondere für Zugversuche», erklärt Schwiedrzik.

Dazu müssen zunächst aus dem verwendeten Material mittels fokussiertem Ionenstrahl Proben mit einer definierten Geometrie hergestellt werden. Um künftig mehr Proben in kürzerer Zeit analysieren zu können und eine statistische Auswertung der Experimente zu ermöglichen, besteht momentan ein grosser Teil der Arbeit darin, die Probenherzstellung zu automatisieren sowie eigene Messaufbauten zu entwickeln.

Persönliche Diagnose

Spannend wird es, wenn es um die Frage geht, wie sich die entwickelten Methoden für klinische Studien verwenden lassen. Dazu läuft im Moment ein Projekt, an dem Forschende des Inselspitals Bern, der Universität Bern, der ETH Zürich und der Empa beteiligt sind. Untersucht wird Knochenmaterial von Patienten, denen ein Hüftimplantat eingesetzt wurde.

Dieses Material wird auf mehreren Längenskalen analysiert. Ziel ist, Daten über mikromechanische Eigenschaften, Mikrostruktur, Zellaktivität und Stoffwechsel zu sammeln und diese mittels «Machine Learning» mit dem klinischen Befund und den Patientendaten zu korrelieren. Die so entstehende Datenbank soll es künftig erlauben, die Knochenqualität eines Patienten zu quantifizieren und mit in die Diagnose einzubeziehen.

Dr. Jakob Schwiedrzik
Mechanics of Materials and Nanostructures
Phone +41 58 765 63 52
jakob.schwiedrzik@empa.ch

Redaktion / Medienkontakt
Karin Weinmann
Kommunikation
Phone +41 58 765 47 08
redaktion@empa.ch

https://www.sciencedirect.com/science/article/abs/pii/S8756328215004196

https://www.empa.ch/web/s206/biomechanics-research

Media Contact

Rainer Klose Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Selen-Proteine …

Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…

Pendler-Bike der Zukunft

– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…

Neuartige Methode zur Tumorbekämpfung

Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…